Смекни!
smekni.com

Скрытое фотографическое изображено и механизм его образования (стр. 2 из 3)

е- + Ag+ Ag0

т. е. явление достаточно известное. Имеются многочисленные, хотя и не во всем согласующиеся друг с другом опытные данные, по которым время жизни атома Ag0 столь мало, что не превышает при комнатной температуре тысячных долей секунды, а чаще бывает и того меньше. Значит, если второй электрон “запаздывает” с появлением вблизи данной ямы (по причине вполне уважительной — он еще просто не возник), то когда он, наконец, возникнет и подойдет к данной яме, у него немало шансов застать ее пустой: имевшийся ион Ag+ уже вернулся к межузельному состоянию и перемещается по кристаллу, и электрон тоже ушел (его там никто не удерживал—иона нет, решетка нейтральна) и движется по кристаллу; не исключено “возвращение блудного сына” к иону галогена (ныне дырке), откуда электрон был освобожден при поглощении кванта, т. е. рекомбинация. Таким образом, образование частицы скрытого изображения придется начинать заново, и чем реже будут возникать свободные электроны, тем более вероятен именно такой ход событий.

Допустим, однако, что обстоятельства благоприятны и там, где уже есть один атом, возникнет также и второй. Этим ситуация резко изменяется: хотя два атома еще не составляют катализатора проявления, их взаимовлияние стабилизирует пару, и время жизни обоих атомов резко увеличивается, т. е. теперь они скорее всего дождутся прихода третьего электрона, образования третьего атома, не распадаясь, а значит, рост группы атомов продолжится беспрепятственно. Многочисленные опыты (о некоторых речь впереди) показали, что время жизни группы даже из двух атомов доходит до многих суток и во всяком случае измеряется часами. Вместе с тем считать их абсолютно устойчивыми тоже нельзя. Вообще,, можно сказать, что среди любых частиц скрытого изображения абсолютно устойчивых не бывает, и даже вполне завершенное скрытое изображение, имеющее свойства катализатора, может постепенно распадаться (уменьшаясь на один атом за раз), если время между экспонированием и проявлением велико, скажем, порядка месяцев или лет, а особенно если экспонированный материал хранится при повышенной температуре.

Трудности роста при высоком темпе возникновения свободных электронов не исчерпываются распылением серебра по многим ямам вместо одной. Дело в том, что глубоких ям, надолго захватывающих электрон и тем гарантирующих ему подход иона Ag+, немного и расположены они, как уже сказано, на поверхности микрокристаллов, т. е. там, где при химическом созревании шли реакции галогенида серебра с примесями желатины и где после погружения в проявитель легче всего получать электроны от проявляющего вещества. Если свободных электронов много (темп их образования высок), больше, чем имеется глубоких поверхностных ям, электроны по необходимости закрепляются на всех других мало-мальски глубоких ямах, а среди таких большинство связано с протяженными дефектами — трещинами, дислокациями и другими нарушениями в объеме микрокрибталлов. Значит, скрытое изображение начнет образовываться не только на поверхности, но и внутри микрокристаллов, а там прямого контакта с восстановителем нет и функционирование частиц серебра в качестве катализатора проявления невозможно. Хорошо еще, если проявитель содержит растворитель галогенида серебра (им в большинстве проявителей является сульфит натрия и в некоторой мере бромид калия) —тогда спустя некоторое время после погружения в проявитель поверхность микрокристаллов растворится и доступ восстанавливающего раствора к скрытому изображению будет открыт; если же взят проявитель мало или вовсе не растворяющий, возникает парадоксальная ситуация—скрытое изображение есть, но выполнить свою основную функцию катализатора ему мешают внешние обстоятельства и проявление не идёт.

Такова более детальная картина, вытекающая из представлений Гэрни и Мотта. Нам еще не раз придется возвратиться к ней в следующем разделе, поскольку из нее прямо следуют некоторые соображения, важные для практической фотографии. В качестве иллюстрации к сказанному приведем здесь два снимка (рис. 13), многое проясняющие.

Принцип получения цветных фотографических изображений

Получение цветных фотографических изображений основано на трехцветно теории зрения. Согласно этой теории светоощущающий aппарат глаза состоит из трех типов элементов, имеющих разную цветочувствительность. Элементы одного типа чувствительны главным образом к синим лучам спектра, второго — к зеленым и третьего — к красным. Красные лучи вызывают возбуждение красночувствительных элементах, создавая впечатление красного цвета, и т. д. L-месь лучей различных цветов способна возбуждать в равной степени все цветочувствительные элементы глаза и вызывает у нас ощущение белого цвета. В результате различных комбинаций степени возбуждения трех типов цветочувствительных элементов глаза получается ощущение всех существующих цветов и всевозможных цветовых оттенков.

При получении цветных фотографических изображений вначале осуществляют разделение оптического изображения на три 3 составляющие, в спектральном отношении соответствующие зонам чувствительности трех приемников световой энергии. Этот процесс называется цветоделением. Далее следует градационный процесс, в ходе которого регистрируются оптические плотности каждого из цветоделенных изображений. В заключительном процессе синтеза цвета оптические плотности цветоделенных изображений управляют в трех цветовых зонах интенсивностью света. Таким образом, для каждой из цветовых зон формируется свое. изображение, а их совмещение обеспечивает цветное воспроизведение объекта съемки.

В цветной фотографии цветоделенные изображения формируются из красителей, цвет которых является дополнительным к основным цветам. Наиболее распространенный способ образования красителей основан на принципе цветного проявления. В упрощенном виде процесс цветного проявления может быть представлен следующей схемой:

AgHal + Red = Ag° + Hal + Ox (1)

Ox + компоненты = краситель (2)

где Red — цветное проявляющее вещество; Ox — окисленная форма цветного проявляющего вещества; Ag° — металлическое серебро.

Легко заметить, что первая стадия процесса (1) практически совпадает с реакцией черно-белого проявления. Отличие заключается в том, что в данном случае применяются цветные проявляющие вещества. (Особенности их действия рассмотрены в следующем разделе.) Компоненты, или, как их еще называют в литературе, цветные либо цветообразующие компоненты, могут находиться в растворе проявителя (диффундирующие компоненты) или вводятся в светочувствительный слой (закрепленные компоненты). В зависимости от химического строения компоненты при взаимодействии с окисленной формой проявляющего вещества образуют желтые, пурпурные или голубые красители.

Реакции, соответствующие уравнениям (1) и (2), протекают в фотографическом слое в процессе цветного проявления практически одновременно. Краситель образуется в количестве, пропорциональном количеству выделившегося металлического серебра. Таким образом, в светочувствительном слое формируются два совмещенные изображения, состоящие из серебра и из красителей. В процессах обработки, следующих за проявлением, серебряное изображение и неэкспонированный галогенид серебра удаляются, после чего в фотографическом слое остается изображение, состоящее только из красителя.

Для получения цветных изображений необходим специальный многослойный цветной фотоматериал, содержащий обычно закрепленные компоненты. На рис. 30 показаны как строение такого материала, так и способ формирования изображения в нем. Основа может представлять собой пленку (например, триацетатную, полиэтилентерефталатную) или бумагу (с баритовым или полиэтиленовым покрытием). Фильтровый слой представляет собой коллоидное серебро, диспергированное в желатине. В некоторых цветных фотоматериалах этот слой отсутствует. Зато есть такие материалы, где между нижним эмульсионным слоем и основой помещается противоореольный слой. Благодаря подбору соответствующих компонент в светочувствительных слоях возникают изображения, по цвету дополнительные лучам той зоны спектра, которую воспринимает данный слой. Так, в верхнем синечувствительном слое образуется желтый краситель; в среднем слое, воспринимающем зеленые лучи (синие поглощаются фильтровым слоем) образуется пурпурный краситель; подобным образом в нижнем красночувствительном слое возникают голубые красители. Порядок расположения слоев может быть иным. Однако везде неизменным остается принцип Нормирования цветного изображения в трех слоях, в которых возникают соответствующие условиям цветоделения красители.

Для каждого из трех красочных изображений может быть построена характеристическая кривая, представляющая собой зависимость оптической плотности соответствующего красителя от логарифма экспозиции (см. раздел 2.3). По этим характеристическим кривым могут быть определены значения светочувствительности, коэффициента контрастности, максимальной оптической плотности, оптической плотности вуали, полезного интервала экспозиций. Для характеристики соотношения сенситометрических параметров отдельных слоев цветных фотоматериалов введено понятие баланса. Баланс по чувствительности Бч определяется соотношением величин светочувствительности для наиболее и наименее чувствительного слоев:

Бч = Sнаиб/Sнаим

В оптимальном случае Бч = 1, а в соответствии со стандартом величина Бч не должна превышать 2,0—2,5 для цветных негативных пленок и 1,6—1,8 для обращаемых. Разбалансировка по чувствительности как негативных, так и позитивных фотоматериалов исправляется с помощью корректирующих светофильтров.