Смекни!
smekni.com

Развитие наук о неорганической природе в ХVIII-ХIХ веках (стр. 3 из 5)

Спустя почти 40 лет после работ Лобачевского, в 1868 г. была опубликована работа Римана “О гипотезах, лежащих в основании геометрии”. Риман, подобно Лобачевскому, опирался на идею о возможности геометрии, отличной от евклидовой, однако подошел к этому вопросу с несколько иных позиций. Риман вводит обобщенное понятие пространства как непрерывного многообразия n-го порядка или совокупности однородных объектов – точек, определяемых системой чисел (х1, х2..., хn).С точки зрения Римана, вопрос о том, является ли геометрия нашего физического пространства евклидовой, что соответствует его нулевой кривизне, или эта кривизна не равна нулю, должен решить эксперимент. При этом он допускает, что свойства пространства должны зависеть от материальных тел и процессов, которые в пространстве развернуты.

Риман также высказал как одну из возможных гипотезу, касающуюся бесконечности пространства. По его мнению, хотя пространство нужно признать неограниченным, однако если оно может иметь положительную постоянную кривизну, то оно уже не бесконечно, подобно тому как поверхность сферы хотя и не ограничена, но тем не менее ее размеры не являются бесконечными. Так зарождается представление о разграничении бесконечности и безграничности пространства (и времени).

Развитие теории неевклидовых пространств привело к вопросу о построении механики в таких пространствах. Первые работы в этом направлении были связаны с вопросом, не противоречит ли геометрия Лобачевского принципам механики? Если бы удалось доказать невозможность построения механики в неевклидовом пространстве, то тем самым была бы опровергнута мысль о возможности реального неевклидова пространства. Однако результаты, полученные в этом направлении, показали, что в неевклидовом пространстве может быть построена механика.

И тем не менее, появление неевклидовой геометрии, а затем “неевклидовой механики” первоначально не затронуло физику. Для физиков пространство оставалось евклидовым и не было никакой необходимости рассматривать физические явления в неевклидовом пространстве. Так продолжалось до возникновения общей теории относительности.

4. Методологические установки классической физики (конец ХVII в. - начало ХХ в.)

К середине ХIХ века в основном завершается становление системы методологических установок классической физики - того теоретико-методологического каркаса, в рамках которого получали свое обоснование и понимание основные понятия, категории, принципы и допущения классической теоретической физики. К методологическим установкам классической физики относятся следующие представления.

1.Важнейшей исходной предпосылкой классической физики (как и всей науки) является признание объективного существования физического мира, т.е. признание того, что физический мир (как совокупность устойчивых явлений, вещей, процессов, расположенных в определенном порядке в пространственно-временном континууме) существует до и независимо от человека и его сознания.

2. Каждая вещь, находясь в определенном месте пространства, существует в определенный промежуток времени независимо (в пространственно-временном отношении) от других вещей. Хотя вещи и способны в принципе взаимодействовать друг с другом, это взаимодействие не приводит к существенному изменению структуры взаимодействующих тел, а если и приводит, то всегда можно уточнить характер происшедших изменений и сделать на него поправку, восстановив тем самым идеальный образ первоначального состояния.

3. Одной из важнейших методологических установок классической физики выступила атомическая концепция.

4. Все элементы физического мира, заполняя пространственно-временной континуум, связаны между собой с помощью причинно-следственных связей таким образом, что, зная в определенный момент времени координаты каждого элемента, можно в принципе абсолютно точно, однозначно предсказать состояние любого элемента через любой промежуток времени. Другими словами, для классической физики свойственна уверенность в том, что в принципе возможно однозначное абсолютно точное предсказание (на основе знания о существующем состоянии элементов физической системы) их поведения через любой промежуток времени (лапласовский детерминизм).

5. Материальный мир познаваем; с помощью имеющихся в наличии исследователя познаваемых средств (теоретических и эмпирических) возможно в принципе объективно описать и объяснить все исследуемые физические явления.

6. Основой физического познания и критерием его истинности является эксперимент, ибо только в эксперименте исследователь через средства исследования непосредственно взаимодействует с объектом; при этом исследователь свободен в выборе условий проведения эксперимента.

7. В процессе исследования физический объект по существу остается неизменным, он не зависит от условий познания. Если же прибор и оказывает какое-либо воздействие на объект, то это воздействие всегда можно учесть, внести в него поправку. В процессе исследования всегда можно четко ограничить поведение объекта от средств исследования, средств наблюдения, экспериментирования. Поэтому и описание поведения объектов и описание поведения приборов осуществляется одинаковыми средствами научного языка.

8. Постулат возможности обособления элементов физического мира: в принципе возможно экспериментальными средствами неограниченное (по отношению к атому) разложение физических объектов на множество независимых вещей и элементов.

9. Все свойства исследуемого объекта могут экспериментально определяться одной установкой одновременно. Нет принципиальных препятствий для того, чтобы полученные таким путем данные могли быть объединены в одну картину объекта.

10. В принципе возможно получение абсолютно объективного знания об объекте, т.е. такого знания, которое не содержит ссылок на познающего субъекта (на условия познания). При этом основными логическими критериями объективности в методологии классической физики считались:

а) отсутствие в содержании физического знания ссылок на субъект познания;

б) однозначное применение понятий и системы понятий для описания физических явлений;

в) наглядное моделирование - эквивалент объективности знания.

11. Сведения о состоянии исследуемых явлений выражаются через величины, имеющие количественную меру. Через измеримые величины выражаются также и физические законы, которые должны быть сформулированы на языке математики (программа Галилея). При этом динамические закономерности поведения элементов физического мира могут быть исчерпывающим образом описаны системой дифференциальных уравнений (т.е. на континуальной основе). Физические системы, как правило, замкнутые, обратимые (направленность времени для них не важна) и линейные.

12. Возможность пренебречь атомным строением измерительных приборов - это одна из общих черт классического, релятивистского и квантового способов описания

13. Уверенность в том, что структура познания в области физики, также как и структура мира физических элементов, не претерпевает существенных качественных изменений, что классический способ описания вечен и неизменен. Как качественно неизменен физический мир, движение элементов которого, сводятся к непрерывному механическому перемещению частиц материи, как неизменны физические закономерности, также неизменен и метод познания этого мира и его законов.

14. Теоретическое описание мира осуществляется тремя видами логических форм: понятиями, теорией и картиной мира. Различие между физической теорией и физической картиной мира - количественное (по степени обобщения), но не качественное; фундаментальная физическая теория и есть (в силу наглядности ее структуросодержащих понятий) физическая картина мира.

5. Развитие астрономической картины мира в ХVIII- ХIХ веках

В течение столетий астрономия развивалась как наука о Солнечной системе, а мир звезд оставался целиком загадочным. И только в ХУШ веке астрономия постепенно перешла к изучению мира звезд и галактик. Начальные шаги на этом пути были связаны с первыми оценками межзвездных расстояний. Основой для этого служили измерения О. Ремером скорости света (1676 г.) и открытие Кеплером закона ослабления силы света с расстоянием. Опираясь на эти данные, Х. Гюйгенс показал, что свет от Сириуса до нас идет несколько лет! А в 1761 г. И. Ламберт уточнил эти данные и показал, что от Сириуса свет до нас идет 8 световых лет. Постепенно осознавалась колоссальность межзвездных расстояний. Важным результатом астрономии этого века было и открытие собственных движений звезд (Э. Галлей, 1718 г.).

В ХVIII в. по мере конструирования все более мощных телескопов удалось выявить новый тип космических объектов - туманности, большинство из которых оказались колоссальными, удаленными от нас на огромные расстояния, скоплениями звезд - галактиками. Так астрономия постепенно становилась внегалактической. Выдающаяся заслуга в создании внегалактической астрономии принадлежит Вильяму Гершелю (1738-1822), который был и конструктором уникальных для его времени телескопов (с диаметром зеркала в 1,5 м), и выдающимся скурпулезнейшим наблюдателем, основателем звездной и внегалактической астрономии. Совершенно особой заслугой Гершеля являются его исследования туманностей. (Мировую славу В.Гершелю принесли его открытия в Солнечной системе: открытие планеты Уран (1781 г.), нескольких спутников Урана и Сатурна, он обнаружил сезонные изменения полярных “шапок” Марса, период вращения кольца Сатурна, открыл движение всей Солнечной системы в пространстве в направлении к созвездию Геркулеса и др. В мире звезд Гершель установил существование двойных и кратных звезд как физических систем, уточнил оценки блеска у 3 тыс. звезд, обнаружил переменность в некоторых из них, первым отметил различное распределение энергии в спектрах звезд в зависимости от их света и др.).