Смекни!
smekni.com

Понятие времени и проблема континуума (к истории вопроса) (стр. 4 из 10)

Интересно разъяснение, которое дает Кавальери новому методу, прямо указывая на то, что ему не ясна природа «неделимого», с помощью которого он «составляет» геометрические объекты, а потому не ясна и сущность самого «составления»: «Я пользовался тем же приемом, каким пользуются алгебраисты для решения предлагаемых им задач: хотя бы корни чисел были неопределимы, непостижимы и неизвестны, они их тем не менее складывают вместе, вычитают, умножают и делят и, если только они окажутся в состоянии получить в результате этих манипуляций нужное им решение предложенной задачи, они считают, что достигли цели. Как раз так же я оперирую с совокупностью линий или плоскостей: пусть они, поскольку речь идет об их числе, неопределимы и неизвестны; поскольку речь идет об их величине, они ограничены всякому видными пределами» [15, с. 89]. Кавальери сознает, что понятие актуальной бесконечности, с которым оперирует геометрия неделимых, порождает «сомнения, связанные с опасностью плавания у скал этой бесконечности» [15, с. 91]. Это сознание, как и та критика, которой подверглось понятие континуума как «совокупности неделимых» со стороны современников Кавальери7, заставили его в седьмой книге «Геометрии» уточнить метод, примененный им в первых шести книгах. Если первоначально Кавальери сравнивал между собой совокупность всех линий одной плоской фигуры с совокупностью всех линий другой (аналогично – и плоскостей, из которых составлены тела), то в седьмой книге он сравнивал любую линию одной фигуры с соответствующей линией другой, или одну плоскость одной фигуры тела с плоскостью другого. Таким путем он избегал необходимости оперировать понятиями «все линии» и «все плоскости». Поясняя свое ограничение, Кавальери писал: «Мы намеревались доказать лишь то, что отношение между континуумами соответствует отношению между неделимыми и наоборот» [17, p. 2].

Самое удивительное однако состоит в том, что одним из критиков Кавальери оказался также и... Галилей, сам, как мы знаем, предлагавший составлять непрерывное из бесконечно большого числа неделимых! Из переписки Кавальери известно, что Галилей не хотел признать правомерности понятий «все плоскости данного тела» и «все линии данной плоскости». Это кажется неожиданным, если мы вспомним, что Галилей допускал «строение континуума из абсолютно неделимых атомов» [12, с. 154], хотя и не мог разъяснить природу этих неделимых8. Как мы уже выше могли видеть, Галилей рассуждал о неделимых не только с точки зрения математической, но и как физик. Размышляя о природе континуума в работе «Разные мысли», Галилей утверждает: «Бесконечность должна быть вовсе исключена из математических рассуждений, так как при переходе к бесконечности количественное изменение переходит в качественное, подобно тому, как, если мы будем самой тонкой пилой размельчать тело, то как бы мелки ни были опилки, каждая частица имеет известную величину, но при бесконечном размельчении получится уже не порошок, а жидкость, нечто качественно новое, причем отдельные частицы вовсе исчезнут» (цит. по: [18, с. 37]).

В чем тут дело? Почему Галилей то допускает понятие актуальной бесконечности, то запрещает его? Почему он критикует Кавальери за метод, каким пользовался сам? Вот что думает по этому поводу С.Я. Лурье, переводчик «Геометрии» Кавальери и автор предисловия к переводу: «Галилей вообще не выставил никакой связной математической теории неделимых: стоя на атомистической точке зрения (непрерывное состоит из неделимых, линия состоит из точек), он в то же время видел логические несообразности, к которым приводила эта теория; компромисс Кавальери его не удовлетворял, он не хотел понять Кавальери, чувствовал, что математический атомизм необходим для дальнейшего прогресса математики, но не знал, как сделать его теоретически приемлемым» [18, с. 39]. Вероятно, С.Я. Лурье здесь недалек от истины, хотя его утверждение о том, что Галилей в своем учении о неделимых следует Демокриту, вряд ли можно принять без оговорок. Галилей пытается найти объединение физического атомизма Демокрита с математическим атомизмом, которого у Демокрита не было, а потому опирается скорее на Архимеда9. Но позиция его в этом вопросе с психологической точки зрения очень показательна; то, что он позволяет себе, хотя и не без некоторых оговорок, крайне раздражает его у другого: тут с особой ясностью ему видны логические противоречия, связанные с понятием актуальной бесконечности, в частности – с бесконечно малым. Как бы то ни было, очевидно одно: Галилею не удалось удовлетворительно разрешить проблему континуума на пути, отличном от евклидовско-аристотелевского, и он, критикуя Кавальери, вынужден признать, что вместе с неделимым в математику входят неразрешимые парадоксы.

Попытки преодолеть парадоксы бесконечного: Декарт, Ньютон, Лейбниц

Не удивительно, что Декарт, признавая принцип непрерывности не только в математике, но и в физике, возвращается в этом пункте к Аристотелю. «Невозможно, – пишет Декарт, – существование каких-либо атомов, т.е. частей материи, неделимых по своей природе, как это вообразили некоторые философы» [19, с. 475]. Соответственно Декарт не допускает в научный обиход и понятие актуально бесконечного. Актуально бесконечен, по Декарту, лишь Бог, но именно потому он и непознаваем. Ведь познание, говорит Декарт, следуя здесь античной традиции, есть полагание предела, границы. «Мы никогда не станем вступать в споры о бесконечном, тем более что нелепо было бы нам, существам конечным, пытаться определить что-либо относительно бесконечного и полагать ему границы, стараясь постичь его. Вот почему мы не сочтем нужным отвечать тому, кто спрашивает, бесконечна ли половина бесконечной линии, или бесконечное число четное или нечетное и т.д. О подобных затруднениях, по-видимому, не следует размышлять никому, кроме тех, кто считает свой ум бесконечным. Мы же относительно того, чему в известном смысле не видим пределов, границ, не станем утверждать, что эти границы бесконечны, но будем лишь считать их неопределенными. Так, не будучи в состоянии вообразить столь обширного протяжения, чтобы в то же самое время не мыслить возможности еще большего, мы скажем, что размеры возможных вещей неопределенны. А так как никакое тело нельзя разделить на столь малые части, чтобы каждая из них не могла быть разделена на еще мельчайшие, то мы станем полагать, что количество делимо на части, число которых неопределенно» [19, с. 437–438].

Из этого отрывка видно, что в качестве понятия, доступного человеческому разуму, Декарт признает только потенциальную бесконечность. Как и Аристотель, он мыслит континуум как беспредельно делимое.

Правда, в отличие от Аристотеля, Декарт не считает вселенную конечной. Но характерно, что он называет ее не бесконечной (infinite), а только неопределенной (indefinite), т.е. бесконечной потенциально, не имеющей предела. Атомизм же Декарт не признает ни в математике, ни в физике: картезианские корпускулы отличаются от демокритовских атомов тем, что они бесконечно делимы. В этом смысле картезианская программа является континуалистской, как и перипатетическая. Отвергая аристотелианскую физику и космологию по целому ряду параметров, Декарт однако полностью разделяет аристотелевский принцип непрерывности.

Таким образом, пересмотр понятий античной науки и философии в ХVII в. отнюдь не был универсальным: важнейшее положение античной математики и физики, вначале поколебленное учением о неделимых Галилея, Кавальери, Торичелли было восстановлено в правах Декартом. Да и Галилей, как мы видели, в вопросе о непрерывности так и не пришел к определенному решению: критикуя Кавальери, он в сущности отказывался от своего революционного переворота.

Споры вокруг принципа непрерывности и природы бесконечно малого не утихали на протяжении ХVII и ХVIII вв., что, впрочем, не мешало дальнейшей разработке и использованию математического анализа. Характерна попытка Ньютона найти выход из затруднений, связанных с понятием актуально бесконечно малого. Первоначально английский ученый употреблял бесконечно малые величины и пользовался ими, как и его предшественники (в частности, Дж. Валлис10), т.е. отбрасывал их на том же основании, что и другие математики: поскольку значение их исчезающе мало по сравнению с конечными величинами. Однако затем Ньютон создает так называемую теорию флюксий. «Главное отличие теории флюксий в ее законченном виде от современного ей дифференциального исчисления, – пишет А.П. Юшкевич, – заключается в стремлении изгнать из математики бесконечное при помощи метода первых и последних отношений, т.е. пределов» [21, с. 26]. Метод флюксий, содержащий в самой первоначальной формулировке принцип пределов, был со стороны Ньютона попыткой избежать актуально бесконечного и обосновать практически уже вошедшее в обиход математиков отбрасывание бесконечно малых слагаемых. Метод флюксий следующим образом вводится в «Математических началах натуральной философии»: «Количества, а также отношения количеств, которые в продолжение любого конечного времени постоянно стремятся к равенству и ранее конца этого времени приблизятся друг к другу ближе, нежели на любую заданную разность, будут напоследок равны» [22, VII, с. 57]11.

Это – первая лемма I книги «Начал». Анализируя математические работы Ньютона, в частности его «Анализ с помощью уравнений с бесконечным числом членов», Д.Д. Мордухай-Болтовской замечает, что Ньютон стоял как бы на перепутье – между созданным им методом флюксий и возникшим позднее у Даламбера понятием предела; однако создать теорию предела Ньютону не удалось [24, с. 289], хотя само понятие «предела» и появляется у Ньютона в «Началах».