Смекни!
smekni.com

Полимерные электреты, их свойства и применение (стр. 5 из 11)

В этом можно убедиться, поставив простейший эксперимент. Надо положить заряженный электрет на лабораторном столе и подождать несколько дней. Оседающая из воздуха пыль, которая притягивается к местам выхода силовых линий, «проявит» рельеф поверхностного заряда. В центре образца поверхность остается чистой или менее запыленной, чем по краям, где видны резкие полосы осажденной пыли. Опыт, разумеется, можно ускорить, искусственно распыляя пыль над поверхностью электрета

Электрические поля электрета с пространственным зарядом

Теперь рассмотрим более сложный случай, когда в электрете имеется объемный заряд с плотностью ρ(х) (см. рис 8), а на поверхности пленки (при х=s) поверхностный заряд отсутствует (σ=0). Поле внутри электрета теперь не будет однородным. В этом легко убедиться, воспользовавшись уравнением Максвелла для вектора индукции электростатического поля:

divD=ρ
.(13)

В нашем случае ρ зависит только от одной координаты (х), от одной координаты будут зависеть напряженность и индукция электрического поля. Кроме того, векторы направлены вдоль оси ОХ, что позволяет рассматривать только одну их проекцию на эту ось, модуль которой равен модулю соответствующего вектора. Тогда в уравнении (13) получим:

или, с учетом связи векторов D и Е:

(14)

То, что производная Е(х) отлична от нуля, доказывает зависимость от х вектора Е, т.е. неоднородность поля внутри электрета. Аналогичное уравнение можно записать для зазора, где нет пространственного заряда:

(15)

Поле Е,. очевидно, будет однородным. Система дифференциальных уравнений (14)-(15), дополненная двумя граничными условиями:

D1-D=0 или ε1ε0Е1-εε0Е=0 (16)

V+V1=0 или

(17)

позволяет решить задачу - найти электрические поля в электрете и зазоре.

Интегрируя по х (14) и (15), получаем общее решение:

(18) E1=C2 (19)

в которое входят две произвольные постоянные - С/ и С,. Их легко найти, подставив (18) и (19) в граничные условия (16) и (17), в результате получается система двух алгебраических уравнений с двумя неизвестными:

Решая систему, находим произвольные постоянные, а затем и выражения для электрических полей в зазоре и пленке:

(20)

(21)

. Частные случаи полей электретов с пространственным зарядом

Полученные выражения носят общий характер, из них можно получить конкретные выражения для полей, если подставить выражение для объемной плотности захваченного заряда ρ(х).

Электрет с поверхностным зарядом

Рассмотрим, например, случай, когда заряд распределен по поверхности с поверхностной плотностью ст. Найдем выражение для объемной плотности заряда.

Рассмотрим рис. 14

Рис. 14

Выделим на пленке участок площадью S и объемом V =Ss. Полный заряд выделенного участка Q=σS. С другой стороны, этот же заряд можно вычислить через объемную плотность заряда:

откуда получаем связь σ и р(х):

(22)

Плотность заряда ρ(х)в пленке всюду равна 0, и только на самой поверхности (при х=s) обращается в бесконечность, так как весь заряд сосредоточен в слое бесконечно малого приповерхностного объема. В математике известна функция, обладающая такими свойствами - дельта-функция Дирака δ(х). Она равна нулю при всех значениях аргумента, кроме х = 0, при котором обращается в бесконечность. Логично поэтому представить объемную плотность заряда ρ (х) в виде произведения некоторой постоянной а на дельта-функцию δ(х-s), принимающую бесконечное значение при х = s:

ρ(x)=aδ(x-s) (23)

Дельта-функция обладает следующим свойством:

(24)

где f(x)- произвольная функция.

Бесконечные пределы можно заменить на конечные, включающие точку «скачка» дельта-функции, поскольку вне этой области подынтегральное выражение равно нулю. В нашем случае достаточно ограничиться пределами от 0 до s. Интегрируя (23) в этих пределах, по свойству (24) получаем:

(25)

Сравнивая с (22), приходим к выводу, что постоянная а равна δ. Таким образом, выражение для ρ(х) приобретает вид:

ρ(х)=σδ(x-s) (26)

Вычислим поля Е и E1, подставив в общие формулы (20) и (21) выражение (26):

Откуда после, несложных преобразований, получаются уже известные нам формулы (10) и (11).

Свободный электрет. «Прямоугольное» («ступенчатое») распределение заряда

В случае объемного заряда также можно рассмотреть случай свободного электрета, когда верхний электрод отсутствует (удален на «бесконечность»). В пределе при s1→∞ из (20) и (21) получаем:

E1=0 (27)

(28)

Таким образом, вне электрета поле также будет равно нулю. Остается найти только напряженность поля внутри диэлектрика,

Пусть ρ(х)имеет вид:

а

Рис. 15. Свободный электрет с «прямоугольным» распределением объемного заряда

Для нахождения поля Е(х) внутри пленки будем рассматривать две области: от х=0 до х=s-а, где заряд отсутствует, и от х=s-а до s, где плотность заряда постоянна и равна ρ0. Соответственно интегралы будут отличны от нуля только при интегрировании в пределах от s-aдо s:

(x<s-a) (30)

(31)

Объединяя, получим выражение для Е(х):

Распределение поля внутри пленки показано на рис. 16

Рис. 16 Распределение напряженности электрического поля внутри свободного электрета с «прямоугольным» распределением заряда

Как видно из рисунка, в области, где заряд отсутствует, электрическое поле однородно, а в области однородного распределения заряда - неоднородно, так как линейно убывает по мере приближения к поверхности.

Короткозамкнутый электрет. «Прямоугольное» распределение заряда.

Если электрод 2 касается поверхности электрета, а внутри пленки создано «ступенчатое» распределение заряда вида (29), то поле внутри электрета будет находиться по формуле ( 21), в которой s1 = 0:

(33)

Подставляя сюда (29) и повторяя вычисления, получим:

График распределения поля показан на рис. 17.

Рис. 17. Распределение электрического поля внутри короткозамкнутого электрета со «ступенчатым» распределением заряда