Смекни!
smekni.com

Происхождение и динамика ударного метаморфизма (стр. 6 из 7)

Тип 2. Пробой высокоскоростным ударником тела Луны до жидкого ядра. При этом на поверхность может подняться большой объем высокотемпературной газообильной магмы, растекающейся на большие расстояния в связи с высокой температурой. При остывании таких лав образуются лунные «моря».

Тип 3. Сквозной пробой высокоскоростным ударником тела Луны. При этом из жерла сквозного кратера изливается высокоскоростной поток метажидкого вещества, образованного ударным гипердавлением. Светлые лучи таких выбросов разлетаются на расстояния в сотни километров.

Тип 4. Остаточный магматизм «трубок взрыва», когда лава в жерле кратера застыла, а медленный возврат вещества из сверхсжатого метажидкого состояния в обычное с увеличением объема вдвое производит медленную эффузию через расщелины или «трубки взрыва» более поздних ударов, как это имеет место в случае долины Шрётера.

Естественно, что процесс гравитационной аккреции определяется законами гравитации, то есть силами гравитации. От соотношения этих сил зависит, направление падения аккрецируемого материала.

Если плотность аккрецируемого материала имеет равномерное статистическое распределение по пространству вблизи каких-либо двух тел, то поток аккреции будет пропорционален площади гравитационного раздела. Следовательно, скорость аккреции пропорциональна массе аккрецирующего тела.

Таким образом, равномерности статистического распределения плотности аккрецируемого материала достаточно для сохранения пропорций между массами аккрецирующих тел (планет). Это свойство процесса аккреции обеспечивает сохранение пропорций масс планет в течение длительного времени.

Встречаемость крупных импактных структур различна на разных планетах, так как различны массы планет. Кроме того, различны пропорции типов аккреции. Однако, в целом для планетной системы приблизительно соблюдается автомодельность скорости суммарной аккреции.

При прохождении галактического рукава возрастает доля аккреции тел с низким отношением массы к площади сечения, то есть планеты растут быстрее, чем их звезда, если последняя не является красным гигантом.

В связи с чрезвычайно большими радиусами красные гиганты в галактическом рукаве растут очень быстро. Это могут быть низкометаллические красные гиганты гало, орбита которых проходит через рукав, или звезды, претерпевшие фазу новой при движении через рукав, а затем, будучи подпитываемые интенсивной аккрецией, 10...30 миллионов лет существующие в фазе высокометаллического красного гиганта.

Хотя функция масс Солпитера (1) имеет квадратичный характер, она является автомодельной также как и функция (4). Это объясняется тем, что функция масс Солпитера является обратным произведением двух функций (4), так как в процессе звездообразования (звездной аккреции) параллельно идут два процесса: аккреция внешнего рассеянного вещества и аккреция звезд другими звездами.

Естественно, что все эти функции носят только приблизительный статистический характер, и при отклонении от них происходит структурное перерождение планетных и звездных систем.

Кроме ударной асимметрии Луны, полученной в момент катастрофы 4,56 млрд лет назад, существует асимметрия ближней и обратной стороны Луны. Поверхность ближней к Земле стороне систематически ниже поверхности обратной стороны.

Чем это объясняется? В современной астрофизике существует миф о большей вулканической активности обратной стороны Луны.

Однако истинной причиной является различие в скорости аккреции. Разница в плотности потока аккреции объясняется влиянием гравитационного поля Земли, которое является своеобразной гравитационной линзой, изменяющей траектории тел материала аккреции. Например, на ближайшую к Земле точку Луны отсутствует вертикальное падение комет и другого материала, так как этому препятствует экранирующее действие Земли. Все тела, падающие на Луну, претерпевают искривление траектории таким образом, что аккреция на обратную сторону Луны превышает аккрецию на ближнюю сторону в 2,15 раза.

Это подтверждается анализом распределения 8800 кратеров диаметром 10...20 км из каталога [10], представляющим собой однородную выборку.

Из отношения скорости аккреции обратной и ближней сторон Луны, а также разницы высот рельефа, можно определить порядок скорости аккреции и ее массы за 4,56 млрд лет.

Скорость аккреции на Луне оказывается порядка 0,9 микрона в год (3 г/м2/год) или 4 км за 4,56 млрд лет. Из (4) можно получить скорость аккреции на Землю – 5,4 микрона в год (30 г/м2/год) или 24 км за 4,56 млрд лет. Эти цифры дают постоянную скорости аккреции в Солнечной системе, то есть время, за которое Солнце и планеты увеличивают массу в e-раз, 2 триллиона лет.

Таким образом, за 8 триллионов лет Солнце может увеличиться в 60 раз, достигнув массы, необходимой для взрыва сверхновой, а весь оптический период жизни Солнца от красного карлика до сверхновой будет составлять 10 триллионов лет, что согласуется со статистикой сверхновых в нашей Галактике.

На планетах, имеющих атмосферу, мелкие кометы теряют свои газо-водяные оболочки в атмосфере, взрываясь еще над поверхностью планеты. Ярким примером служит Тунгусский «метеорит», взорвавшийся над рекой Подкаменная Тунгуска в 1908 г. Каменный керн этой кометы не найден до сих пор. По всей видимости его не было вовсе, но лишь обычная для комет реголитовая компонента, составляющая 2% массы и превращающаяся при взрыве кометы в тонкие волокна тектитового стекла – стриммерглассы [18, 19].

Однако большие кометы не успевают взорваться в атмосфере, поэтому на таких планетах как Земля, Венера и Марс имеются многокилометровые кольцевые импактные структуры типа лунных цирков. Конечно, многие из них размыты эрозией, но их следы выявляются при тщательном исследовании по аэрокосмическим снимкам и данным геологической разведки.

В условиях Земли мы можем наблюдать структуры импактного метаморфизма, образованные воздействием ударного гипердавления на горные породы. Это так называемые «трубки взрыва» или кимберлитовые трубки. Они встречаются в древних породах континентальных щитов, то есть тех породах, которые пережили периоды перехода Солнечной системы через ударные фронты галактических рукавов, когда кометы галактической скорости пронзали Землю.

В современной геофизике за истину принят миф об эндогенном происхождении кимберлитовых трубок, якобы являющихся прорывом мантийного вещества на дневную поверхность. Этому, однако, противоречат такие факты, как наличие кимберлитовых трубок имеющих глубину лишь несколько километров. Кроме того, минералы, образующиеся в результате гипердавлений, такие, как алмаз, образуются не в условиях мантии, а вблизи поверхности, так как часто в алмазах находят включения древних растительных остатков. Часто трубки взрыва располагаются цепочкой, что свойственно падению распадающейся уже на подлете к Земле кометы, например, месторождение алмазов им. Ломоносова в Архангельской области. В связи с непониманием генезиса «трубок взрыва» находятся в тупике теория и практика их разведки, а также определение причины алмазоносности лишь малого процента трубок. Повторюсь, что единственной здравой статьей, найденной автором, была статья [16].

На самом деле трубки взрыва образуются независимо от слагающих пород, так как место космического удара случайно. Существующее преимущественное распределение трубок взрыва на древних щитах лишь говорит лишь о том, что древние щиты в силу своего длительного существования имели больше шансов подвергнуться бомбардировке.

Алмазоносность трубок взрыва определяется лишь наличием углеродосодержащих залежей в месте и момент удара. Это, по преимуществу, месторождения графита и угля, которые подвергаются воздействию гипердавления в момент удара. Низкая температура окружающих горных пород у поверхности способствует сохранению образовавшихся алмазов.

Так как кометное вещество по большей мере состоит из воды, то гидросфера Земли – это продукт аккреции комет, содержащих большое количество воды. Марс, другие холодные планеты и их спутники должны иметь мощные гидросферы в виде океанов, покрытых льдом.

Выводы

В результате проведенного исследования автором было выяснено следующее.

1. Источником аккреционной массы Луны и планет более, чем на 99,9% являются кометы, а современная «метеоритная теория» происхождения лунных кратеров ложна, начиная со своего названия. Адепты «вулканической теории» не понимают причин магматических извержений, которые имеют чисто импактную природу.

2. Лунные импактные структуры можно разделить на 8 классов: чаши, цирки, моря, воронки, трубки взрыва, сквозные кратеры, рвы и долины.

3. Лунный магматизм имеет чисто ударную природу, когда появление магмы в одном случае является следствием перехода энергии удара в тепловую энергию горных пород, а в другом случае есть излияние вещества жидкого ядра Луны на поверхность через «трубку взрыва». Имеется 4 типа магматической эффузии.

4. Моря отличаются от цирков лишь размером и заполнением лавой, излившейся из трубки взрыва. Такие лавовые поля имеются и в цирках, образованных кометами со скальным керном, пробивающим трубку взрыва, через которую изливается магма.

5. В масштабе многих миллиардов лет аккреция идет непрерывно, а в меньших масштабах является периодической импульсной функцией движения Солнечной системы через галактические рукава – основные поставщики кометной массы.

6. На основе открытия непрерывности аккреционного процесса автором найден способ оценки возраста любого участка поверхности по заполнению его кратерами.