Смекни!
smekni.com

Возможности использования достижений нейробиологии с целью повышения качества профессионального образования (стр. 2 из 2)

Длинные отростки нейронов (аксоны) образуют белое вещество мозга, которое отличается цветом от основной серой части мозга - коры, состоящей из нервных клеток (нейронов). Нейрофизиологи сперва не обнаруживали надлежащего интереса к белому веществу, считая, что аксоны просто соединяют между собой нейроны разных областей мозга. В теориях, которые пытались в общих чертах объяснить механизмы обучения и памяти, основное внимание отводилось молекулярным изменениям в нейронах и синапсах - точках контактов между нейронами. Однако, несмотря на то, что именно нейроны в сером веществе обеспечивают умственную и физическую активность человека, функционирование белого вещества оказалось не менее важным для приобретения разных знаний.

Важность белого вещества заключается в его непосредственном участии в передаче информации между областями мозга и в обеспечении его согласованной и целостной работы. Во время созревания мозга точность и эффективность связей между его областями повышается. От того, насколько хорошо построены эти связи, в определенном возрасте может зависеть способность осваивать разные знания и навыки.

Исследования показывают, что степень развития белого вещества у людей разная. Наибольшие изменения происходят тогда, когда человек продолжительное время с высокой интенсивностью осваивает или совершенствует любые умения и навыки. Обследование профессиональных пианистов удостоверило [8], что в них белое вещество в определенных областях мозга развито значительно сильнее, чем у людей, которые не имеют связи с музыкой. Больше того, белое вещество лучше развито у тех пианистов, которые стали регулярно заниматься музыкой до 11 лет, если сравнивать их с теми, кто начал занятия и упражнения позже. Сканирование мозга дало возможность сделать очень важный вывод: чем выше профессиональное и исполнительское мастерство, тем больше белого вещества в мозгу данного человека.

У людей, которые научились играть после того, как стали взрослыми, развитие белого вещества наиболее заметно в передней части мозга - там, где миелинизация еще не была завершена.

Эти открытия дают весомые доказательства того, что процесс формирования миелина вокруг нервных волокон детерминирует временные границы для освоения новых сложных навыков - так называемые „критические периоды”, в течение которых возможен, целесообразен и эффективен определенный вид обучения.

Можно с уверенностью сказать, что белое вещество играет ключевую роль в таких видах обучения, которые требуют продолжительной практики и многоразовых повторений, а также большой интеграции отдаленных одна от одной областей коры больших полушарий. У детей и подростков процесс миелинизации идет интенсивно, поэтому им намного легче осваивать новые навыки.

Люди преклонного возраста тоже могут учиться, но им доступен другой вид обучения, которое задевает только синапсы. И продолжительные занятия с высоким уровнем индивидуальной мотивации заставляют нейроны разряжаться много раз, а тогда появляется возможность того, что подобные интенсивные нервные разряды будут стимулировать миелинизацию.

Итак, появились дополнительные важные доказательства того, что каждый человек развивает свой мозг путем обучения и взаимодействияя с внешней средой. Унаследованного естественно-генетического „дара”, как правило, весьма мало для беспроблемного и быстрого достижения индивидуального „акме” - пика ментальных и профессиональных способностей. Как свидетельствуют уже полученные учеными результаты, для выхода на „акме” в большинстве случаев необходимо начинать обучение и тренировку мозговых структур и других частей человеческого тела в раннем возрасте. Это гарантирует полное использование заложенного природой в мозг интеллектуально-профессионального потенциала.

Указанные достижения в исследовании вспомогательных структур человеческого мозга мы считаем очередным доказательством того, что настало время работы над интеграцией достижений многих наук с целью повышения на этой основе эффективности учебно-воспитательного процесса. Уже известная информация из сектора возрастной психологии, из последствий многочисленных экспериментов с „развивающим” обучением детей и молодежи в альтернативных классах и школах должна быть объединена с неопровержимыми доводами нейробиологов, продолжающих детальные исследования мозговой деятельности.

Можно предсказать - новые достижения ждут нас в сфере детализации особенностей и функций все меньших и меньших активных участков и зон человеческого мозга. Появились основания для определенного оптимизма относительно репарационных процессов - восстановление работы мозга после значительных механических и других повреждений. Нужно ждать прогресса на пути целесообразной и безвредной для человека интенсификации работы мозга, усиления имеющихся индивидуальных способностей. Именно здесь нужно ожидать объединения возможностей объективного диагностического психолого-педагогического тестирования с достижениями нейрофизиологии, подобными рассмотренным выше.

В окончании укажем - мы очень скептически оцениваем возможный положительный эффект от механического объединения в голове человека изделий современной микроэлектроники (в первую очередь - процессоров для современных компьютеров) с молекулярными структурами нашего мозга. Подобные е-устройства, которые могут работать исключительно с дискретными электрическими сигналами, целесообразно как можно скорее применить лишь для репарации поврежденных систем чувств человека - слуха, зрения и других. Имеющаяся и перспективная электроника и в самом деле способна предложить, например, „искусственный глаз”, который будет присылать в зрительную зону коры поток е-сигналов, подобный тем, которые направляет в эту зону здоровая сетчатка (правда, он окажется меньше по объему и будет формировать менее четкое и детальное изображение). А вот процесс мышления и формирование осознанных и сложных интеллектуальных решений остается – по своей природе - отличным от принципов цифровых компьютеров и, возможно, имеет квантово-волновые основы ([4; 5] и др.). Именно поэтому ведущие ученые мира не питают оптимизма относительно создания в ближайшее время „искусственного ума” или эффективного объединения продуктов микроэлектроники со структурами аналитических зон нашего мозга. Человечеству лучше надеяться на ресурсы собственного мозга и прикладывать побольше усилий к обучению новых поколений и формированию у их представителей более широких научных знаний, совершенной и цивилизованной духовности.

Список литературы

1. Всемирный доклад по мониторингу ОДВ 2008 (Образование для всех к 2015 году Добьемся ли мы успеха?). – Париж, ЮНЕСКО, 2008. – 492 с.

2. Корсак К.В. От начального до первичного образования: четыре столетия розвития // Начальная школа. - №2. – 2002. – С. 16-20.

3. Корсак К.В. Образование, общество, человек в ХХІ веке: Монография. – К.–Н.: Изд-во НГПУ им. Н.Гоголя, 2004. – 224 с.

4. Пенроуз Р. и др.. Большое, малое и человеческий разум / Роджер Пенроуз, Абнер Шимони, Нэнси Картрайт, Стивен Хокинг ; [пер. с англ. А. Хачояна под ред. Ю. Данилова]. — СПб.: Амфора. ТИД Амфора, 2008. — 191 с.

5. Пенроуз Р. Новый ум короля. О компьютерах, мышлении и законах физики: Пер. с англ. Изд. 2-е, испр. – М.: Едиториал УРСС, 2005. – 400 с.

6. Поляков М.В., Савчук B.C. Классический университет: эволюция, современное состояние, перспективы. - К.: Генеза, 2004. - 416 с.

7. Филдз Д. Друга часть мозга // В мире науки. – 2004. - №7. – С. 22-31.

8. Филдз Д. Вещественность белого вещества // В мире науки. – 2008. - №6. – С. 39-45.

9. Харченко Е.П., Клименко М.Н. Пластичность мозга //Химия и жизнь. – 2004. - № 8. – С. 26-31.