Смекни!
smekni.com

Методика изучения многогранников в школьном курсе стереометрии (стр. 2 из 11)

Все сказанное содержится в наглядном представлении о многограннике и явно оговаривается для того, чтобы проанализировать это наглядное представление и тем самым выяснить, во-первых, те его элементы, которые должны фигурировать в формально строгом определении многогранника, а во-вторых, точнее различать в конкретных случаях, какая фигура должна быть признана многогранником, а какая – нет.

2)Дадим строгое определение многогранника, предложенное А.Д. Александровым.

Начнем с кратких предварительных определений; все они относятся как к пространству, так и к плоскости.

Фигура – это то же, что множество точек.

Точка называется граничной точкой данной фигуры, если сколь угодно близко от нее есть точки, как принадлежащие фигуре, так и не принадлежащие ей.

Точка фигуры, не являющаяся ее граничной точкой, называется внутренней.

Множество всех граничных точек фигуры называется ее границей, а множество всех ее внутренних точек – внутренностью.

Замкнутой областью называется множество точек, обладающее следующими свойствами:

(1)Оно содержит внутренние точки, а внутренность его связна.

(2)Оно содержит свою границу, и она совпадает с границей его внутренности.

Данное определение относится либо к множеству точек на плоскости, либо – в пространстве. Замкнутая область в пространстве называется телом, а на плоскости – плоской замкнутой областью или просто замкнутой областью, если ясно, что речь идет о фигуре на плоскости.

Из определения замкнутой области – как на плоскости, так и в пространстве – следует, что она состоит из внутренности и ее границы, которая оказывается так же границей самой замкнутой области. Поэтому замкнутую область можно определить несколько иначе. Замкнутая область – это множество точек, имеющее (не пустую) связную внутренность и состоящее из нее и ее границы.

Оба данные выше определения равносильны. Граница замкнутой области всюду прилегает к ее внутренности. У «куба с крылом» (рис 1.1) «крыло» входит в границу фигуры, но не содержится в границе ее внутренности. Граница тела называется его поверхностью.

В определении замкнутой области не требуется, чтобы она была ограниченной – имела конечные размеры; допускаются и бесконечные области. Примерами в пространстве могут служить полупространство, двугранный угол, как множество, ограниченное двумя полуплоскостями, и др. Все пространство тоже является телом – это единственное тело, не имеющее границы.

Часто в само понятие тела включают требование его ограниченности – конечности его размеров, но этого делать не будем, потому что в геометрии имеют дело и с бесконечными телами. Точно так же и в планиметрии встречаются и бесконечные области, например угол – часть плоскости, ограниченная двумя лучами с общим началом.

Дадим теперь определение многоугольника и многогранника.

Многоугольником называется замкнутая область конечных размеров, граница которой состоит из конечного числа отрезков. Многоугольник называется простым, если его граница представляет собой одну простую замкнутую ломаную.

Многогранником называется тело конечных размеров, граница (поверхность) которого состоит из конечного числа многоугольников. Данное определение повторяет определение на основе наглядных представлений, однако теперь входящие в него понятия тела и его поверхности понимаются не только наглядно, но и с точки зрения данных им выше определений.

Нередко, как уже говорилось, многогранником называют не тело, ограниченное многоугольниками, а поверхность, составленную из многоугольников; такое словоупотребление встречается вне школьного курса даже чаще. Встречается и смешение терминов, когда «многогранник» понимается то в одном, то в другом смысле. Так, когда говорят, например, «склеим из развертки куб», то имеют в виду не тело, а поверхность.

Подобное употребление одного и того же слова в разных, хотя и тесно связанных, смыслах встречается в геометрии постоянно и, можно даже сказать, характерно для нее. Углом называют и фигуру, состоящую из двух лучей, и ограниченную ею часть плоскости; так же как двугранный угол понимается или как фигура из двух плоскостей, или как ограниченная ею часть пространства; многоугольником называют и ломаную, и ограниченную ею часть плоскости, и т. п. В этом нет ничего страшного, если каждый раз понимать, в каком именно смысле употребляется в данный момент тот или иной термин.

3)Можно дать другое определение понятия многогранника, если учесть следующее: фигура, составленная из многогранников, прилегающих друг к другу по граням или по кускам граней, сама оказывается многогранником, и так можно из простых многогранников составлять сколь угодно сложные. Это замечание можно уточнить и получить из него новое определение многогранника, исходя из самых простых многогранников – из тетраэдров. А именно выполняется теорема.

Теорема. Всякое тело, составленное из тетраэдров, является многогранником и всякий многогранник можно разбить на тетраэдры или, что равносильно, составить из тетраэдров.

В несколько уточненной форме и не пользуясь понятием тела, эту теорему можно высказать так:

Фигура является многогранником тогда и только тогда, когда ее можно составить из конечного числа тетраэдров так, что:

(1)каждые два тетраэдра либо не имеют общих точек, либо имеют только одну общую вершину, или одно общее ребро, или одну общую грань;

(2)от каждого тетраэдра к каждому можно пройти по тетраэдрам, последовательно прилегающим один к другому по целым граням.

Данная теорема позволяет определить многогранник как фигуру, составленную из тетраэдров так, что выполнены условия (1), (2).

Такое определение, которое характеризует предмет тем способом, каким он может быть построен, называется конструктивным. Полученное определение многогранника именно такое; любой многогранник строится последовательным прикладыванием тетраэдров по граням; а как строить тетраэдры – известно.

В противоположность этому определения многогранника, рассмотренные ранее, состоят в указании его характерных свойств или, иначе говоря, в точном его описании. Такие определения называют дескриптивными, т.е. описательными.

Описательное определение многогранника позволяет судить о фигуре, является ли она многогранником или нет. Посмотрел со всех сторон на данное тело, увидел, что всюду его поверхность состоит из многоугольников, - значит, многогранник. Такой же характер имеют, например, обычные определения призмы и пирамиды.

Как и для многогранника, конструктивные определения можно дать многоугольникам многогранной поверхности. [2]

4) Другой подход к определению многогранника представлен в книге В.Г. Болтянского «Элементарная геометрия» [7], построенный на основе вейлевской векторной аксиоматики геометрии. Этот подход не применяется в школьных учебниках, но для примера можно привести одно из определений.

При вейлевском изложении геометрии первоначальными понятиями являются точка, вектор и следующие операции над ними: паре точек сопоставляется некоторый вектор, сумма векторов, произведение вектора на число и скалярное произведение, а также их свойства.

Наиболее известным примером многогранника является параллелепипед. Его можно описать следующим образом. Берется параллелограмм ABCD и из его вершин откладываются равные векто­ры АА1=ВВ1 =СС1 =DD1 =e, где с не параллелен плоскости параллелограмма ABCD(рис. 1.3). [7]

Определение частных видов многогранников (призмы, пирамиды и др.) в данном подходе практически не отличаются от определений в школьном курсе, однако интересен сам подход к определению на основе другой аксиоматике.

Таким образом, определение многогранника может быть дано различными способами, и в разной литературе и в разных учебниках можно встретить различные подходы к определению.

Можно дать понятию многогранника как дескриптивное, так и конструктивное определение, как определение, основанное на наглядном представлении, так и строгое. Можно определить многогранник как тело и как поверхность. Различны также определения многогранника, данные на основе различных аксиоматик. В школьных учебниках чаще дается какое-то одно определение, но полезно учащимся показывать и другие способы определения многогранника.

Как и при введении понятия многогранника, существуют различные способы введения выпуклых многогранников и правильных многогранников. Рассмотрим эти способы подробнее.

1.2 Подходы к определению выпуклого многогранника.

После введения понятия многогранника в школе, как правило, рассматривают выпуклые многогранники. Удачным считается подход, когда сразу дается определение выпуклого многогранника и для него определяются элементы, что сделать легче. Изучение свойств как выпуклых многоуголь­ников, так и выпуклых многогранников занимает очень большое место в школьном курсе геомет­рии. Однако точный смысл понятия «вы­пуклый» в средней школе не раскрывается и причины, заставляющие требовать вы­пуклости рассматриваемых многоугольни­ков и многогранников, нигде не объясняют­ся. Учащиеся часто вообще не воспринима­ют смысла прилагательного «выпуклый» и лишь по привычке, машинально в ответ на предложение изобразить какой-либо че­тырехугольник рисуют фигуру, изображен­ную на рисунке l.4,а(а иногда даже фигуру, изображенную на рис 1.4,б), а не фигу­ру, изображенную на рис l.4,в. При этом может показаться, что лишь недостаток об­щей математической культуры заставляет их считать все четырехугольники выпуклы­ми, подобно тому как наиболее слабые школьники иногда не в состоянии предста­вить себе четырехугольника, отличного от прямоугольника (рис. 1.4,б), параллело­грамма или, в лучшем случае, от трапеции. В некоторых случаях игнорирование усло­вия о выпуклости многоугольника или мно­гогранника оказывается даже совершенно законным - какую, например, ценность имеет оговорка о выпуклости в теореме: сумма углов выпуклого n-угольника равна (n - 2) .180° Условие этой теоремы пол­ностью сохраняет силу и для невыпуклых (простых) многоугольников; так, например, ясно, что сумма углов и невыпуклого четы­рехугольника (рис. 1.4,в) равна 360°. Прав­да, приводимое в школе доказательство теоремы справедливо лишь для выпук­лых многоугольников.