Смекни!
smekni.com

Психолого-педагогічні аспекти комп’ютерного моделювання при вивченні розділу "Геометричної оптики" (стр. 2 из 15)

При цьому НІТН дають змогу провести десятки експериментів за порівняно невеликий проміжок часу при швидкому зворотному зв'язку і візуалізації результатів експериментів.

Більшість авторів ще 5– 6 років тому передбачали, що зростання «дружності» засобів інформатики суттєво зменшить вимоги до підготовленості користувача для предметного, галузевого використання програмних засобів як спеціалізованих, так і загального призначення.

Нині уже стає зрозумілим, що дана проблема у ряді випадків не розв'язується так, як передбачалося, а саме шляхом ускладнення програмно-апаратного забезпечення і спрощення доступу користувача до нього і використання його можливостей.

Протиріччя, яке виникло між зростаючими можливостями засобів опрацювання інформації і психофізіологічними обмеженнями каналу взаємодії людини з програмно-апаратними засобами, спричинило появу та поширення засобів Multimedia, поняття «віртуальна реальність». Водночас виникло протиріччя між доступністю результатів опрацювання інформації та все зростаючою прихованістю самого процесу опрацювання інформації. При створенні НІТН фізики прихованість опрацювання інформації, на нашу думку, не завжди бажана, оскільки на певних етапах одним з обов'язкових результатів навчання є формування умінь і навичок проведення фізичних вимірювань, а не лише опрацювання їх результатів [2].

Необхідно зазначити, що учні середніх шкіл, а особливо учні шкіл гуманітарних, не володіють необхідними навичками мислення для глибокого розуміння явищ, процесів, які описано в цих розділах. У таких випадках на допомогу приходять сучасні засоби навчання, і в першу чергу – ПК. Такі уроки викликають в учнів справжній інтерес, змушують працювати всіх, навіть слабко підготовлених дітей. Якість знань при цьому відчутно зростає.

Багато явищ в умовах шкільного фізичного кабінету не можна продемонструвати. Це наприклад, явища мікросвіту, або процеси, що швидко відбуваються, досліди з приладами, яких немає в фізичному кабінеті. Діти відчувають труднощі, бо не в змозі уявити ці явища, а комп'ютер може створити моделі явищ; які допоможуть подолати цю проблему.

Комп'ютерне моделювання дає змогу створити на екрані комп'ютера живу, наочну й динамічну картинку фізичного досліду або явища, яке важко пояснити «на пальцях», і відкриває для вчителя широкі можливості для удосконалення уроків.

Слід зазначити, що під комп'ютерними моделями розуміємо комп'ютерні програми, які імітують фізичні досліди, явища або ідеалізовані модельні ситуації, що трапляються у фізичних задачах. Вони легко вписуються у традиційний урок.

Комп'ютер також підвищує і стимулює інтерес до навчання, активізує мислительну діяльність і ефективність засвоєння нового матеріалу, допомагає учням, які пропускають заняття через хворобу, сприяє розвитку самостійності учнів.

Комп'ютерні уроки потребують особливої підготовки. Потрібно чітко визначити мету, якої ми хочемо досягти. До таких уроків треба писати сценарії, продумано «вплітати» справжній і віртуальний експерименти.

Варто пам'ятати, що моделювання різних явищ у жодному разі не замінить справжніх дослідів, а в сукупності з ними дасть змогу на вищому рівні пояснити фізичні закономірності [4].

Немає сумніву, що введення ПК у практику навчання фізики в школі сприятиме вдосконаленню навчального процесу та інтелектуальному розвитку учнів відповідно до потреб часу.

удосконалення навчальної роботи з учнями, які лише починають вивчати фізику, передбачає формування їхньої внутрішньої готовності до сприйняття якісно нового змісту науки про природу. З перших уроків фізики діти повинні сприймати інформацію, на перший погляд легку і просту для розуміння.

Подібну інформацію вони осмислювали і до вивчення предмета, але тепер їм треба свій досвід коригувати, переосмислювати відповідно до нових знань. Це вимагає певних вольових зусиль і розвинутої уваги.

Перші уроки фізики якісно відрізняються від уроків з предметів, уже знайомих учням. Ця відмінність полягає в тому, що уроки фізики насичені не лише звичайною інформацією, а й експериментами, розв'язуванням розрахункових і якісних задач, лабораторними і практичними роботами, висуненням гіпотез та їх доведенням, спостереженнями явищ природи з наступним формуванням висновків. Крім того, учні повинні запам'ятати символи і вміти записувати за їх допомогою формули фізичних величин, розуміти функціональну залежність величин, вивчити Серед засобів, що сприяють формуванню в учнів абстрактного мислення й підвищення теоретичного рівня, виділимо моделювання. Воно може бути опорою для виконання розумових операцій та систематизувати одиниці вимірювання величин, розуміти фізичний зміст явиш, знаходити табличні значення фізичних величин, вміти аналізувати їх та ін.

Це далеко неповний перелік видів роботи учня на уроці фізики. пізнавальних завдань. Зміст фізики наповнений об'єктами, які можна моделювати. Система такої роботи дасть змогу використати процес моделювання як дидактичний прийом розкриття внутрішніх зв'язків і відношень в явищах природи і виявлення на цій основі законів та закономірностей, що стимулюватиме виховання довільної уваги учнів на уроці. У процесі виготовлення моделей учні привчаються відповідальніше ставитися до праці, а сам процес праці виховує вольові якості учня, такі необхідні для виховання довільної уваги. Особливо важливе значення має моделювання під час вивчення складного теоретичного матеріалу, коли сам процес моделювання включає пізнавальні завдання, стимулюючи пізнавальну діяльність учня. На уроці необхідно забезпечити органічне поєднання використання моделей та інших наочних посібників зі словом учителя.

Отже, використовуючи досвід учнів, набутий у результаті виготовлення моделі, і поєднуючи його з інформацією, одержаною на уроці за допомогою зору, слуху та інших органів чуття, ми створили сприятливі умови для уважнішого вивчення явиш природи в майбутньому. Спостереження показують, що без використання наочності учні погано засвоюють подібні залежності. Разом з тим, концентруючи увагу учнів на одних і тих самих явищах протягом кількох уроків (під час вивчення матеріалу, перевірки знань та їх закріплення), ми домагаємося об'єднання в одну систему старих зв'язків, які утворилися в одних учнів під час виготовлення моделей, а в інших – під час використання їх у процесі вивчення теми, з тими новими зв'язками, що утворюються в учнів при подальшому осмисленні ними здобутих знань.

Частина учнів пасивно ставиться до сприйняття навчального матеріалу на уроці, оскільки у них немає звички завжди працювати уважно. Моделювання сприяє якомога частішому використанню довільної уваги учня, бо він сам себе змушує систематично й уважно ставитися до результатів своєї праці, розвиває самостійність і творчість мислення, створює емоційну обстановку на уроці [9].

Учень, який вирішив виготовляти модель, повинен уважно вивчити теоретичний матеріал, виділити суттєві моменти теорії, що покладені в основу конструкції, розробити власну теоретичну схему виготовлення моделі. Залежно від цих чинників одні учні приходять до незадовільних результатів, інші, спрямовуючи свою волю і використовуючи знання та вміння, перемагають труднощі і впевнено завершують розпочату роботу.

На прикладах конкретних проблем розглянуто весь основний цикл моделювання: аналіз досліджуваної проблеми з метою виявлення суттєвих властивостей об'єкту (перебігу процесу, явища), постановка задачі (формалізація на основі прийняття певних спрощуючих припущень), побудова моделі, складання алгоритму, обчислювальний експеримент, включаючи перевірку моделі на адекватність, інтерпретація результатів, вдосконалення моделі. З погляду природи досліджуваних нами явищ виділяються детерміновані й стохастичні моделі; особливості побудови моделей кожного типу розглядаються та відпрацьовуються на конкретних прикладах.

У процесі вивчення розділу обговорюються такі специфічні питання моделювання, як вибір придатного типу моделі, дискретизація процесів, що моделюються, використання чисельних методів, походження похибок обчислень та шляхи їх зменшення. Реалізовано можливість побудови моделей різних типів для вивчення одного й того ж явища та однотипних моделей для вивчення різних явищ. Спрощений спочатку опис виучуваного явища в подальшому поглиблюється. Майже кожна модель має не менше трьох версій. При цьому поступово нарощується понятійний апарат і триває опанування нових методів роботи (проте кількість спеціальних понять та термінів зведено до мінімуму).

Початкові версії усіх моделей, що пропонуються учням, е украй спрощеними. У процесі перевірки на адекватність результатів роботи виявляється їхня майже повна якісна та кількісна невідповідність дослідним фактам. Далі здійснюється поступове ускладнення моделі шляхом уведення до розгляду нових суттєвих факторів, які в попередній версії моделі не бралися до уваги, тобто впливом яких нехтували. У результаті таких дій модель стає дедалі все більш достовірною, що й позначається на результатах моделювання. При такій роботі суттєво важливим є дотримання принципу відповідності: кожна наступна вдосконалена версія моделі повинна містити у собі всі попередні версії як окремі випадки.

Практична робота з комп'ютерними моделями і зокрема, обчислювальний експеримент із подальшою графічною інтерпретацією результатів потребують вирішення принципового питання про вибір середовища для моделювання.

Традиційно таке питання вирішується на користь мов програмування високого рівня, що вимагає з боку учнів значних зусиль, спрямованих на створення зручного користувального інтерфейсу, і тим самим помітно відволікає від безпосередньої роботи з моделлю. На основі докладного аналізу зазначеної методичної трудності нами була висунута гіпотеза про те, що на початковому етапі (під час роботи з детермінованими моделями) цілком достатньо, щоб середовище для моделювання задовольняло таким вимогам: