Смекни!
smekni.com

Установление и использование межпредметных связей при изучении элементов III и V группы периодической системы Д.И. Менделеева (стр. 5 из 9)

НNО3 – cильный окислитель

При взаимодействии НNО3 с металлами (М) водород не выделяется:

М + НNО3® соль + вода + газ.

Смесь HNO3 (конц.) с HCl (конц.) в объемном соотношении 1:3 (1V HNO3 + 3V HCl) называют «царской водкой».

Au + HNO3 + 3HCl = AuCl3 + NO

+ 2H2O.

Азотная кислота не реагирует с другими кислотами по типу реакций обмена или соединения. Однако вполне способна реагировать как сильный окислитель. В смеси концентрированных азотной и соляной кислот протекают обратимые реакции, суть которых можно обобщить уравнением:


Образующийся атомарный хлор очень активен и легко отбирает электроны у атомов металлов, а хлорид-ион образует устойчивые комплексные ионы с получающимися ионами металлов. Все это позволяет перевести в раствор даже золото. Концентрированная H2SO4 как сильное водоотнимающее средство способствует реакции разложения азотной кислоты на оксид азота(IV) и кислород. Азотная кислота – одна из сильных неорганических кислот и, естественно, со щелочами реагирует. Реагирует она также и с нерастворимыми гидроксидами, и с основными оксидами [4].

При изучении темы «Азот. Соединения азота» пользуются учебником химии под редакцией Г.Е. Рудзитис, Ф.Г. Фельдман, также учебником за 9 класс под редакцией Н.С. Ахметова. Дидактическим материалом служит книга по химии для 8-9 классов под редакцией А. М. Радецкого, В. П. Горшкова; используются задания для самостоятельной роботы по химии за 9 класс под редакцией Р.П. Суровцева, С.В. Софронова; используется сборник задач по химии для средней школы и для поступающих в вузы под редакцией Г.П. Хомченко, И.Г. Хомченко. На изучение этой темы отводится 7 ч [4, 5].


ГЛАВА 3. МЕЖПРЕДМЕТНЫЕ СВЯЗИ ПРИ ИЗУЧЕНИИ III И V ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ Д.И.МЕНДЕЛЕЕВА

3.1 III-А группа

3.1.1 Бор

3.1.1.1 Распространение в природе

Бор никогда не встречается в природе в свободном состоянии, он всегда оказывается связанным с кислородом. В этой форме он присутствует в борной кислоте Н3BO3, которая содержится в воде горячих источников вулканических местностей. Кроме того, в природе распространены многочисленные соли борной кислоты. Из этих солей наиболее известна бура или тинкал Na2B4О7. 10Н2О. Техническое значение имеют борацит 2Mg3B8O15. MgCl2, пандермит Са2B6О11.2О, колеманит Са2B6О11.2О, кернит Na2B4О7.2О.

Необходимо указать и следующие минералы, которые являются производными борной кислоты: борокальцит СаB4О7.2О, борнонатрокальцит NaСаB5О9.2О, гидроборацит MgCaB6О11.2О, боромагнезит 2Mg5B4О11.2О, сингалит MgAlBО4 и др. [9-11].

3.1.1.2 Биохимическая роль

Бор и его соединения имеют большое значение в народном хозяйстве. Изотоп 510B, поглощающий нейтроны, применяют в ядерной технике для замедления ядерных цепных реакций. Бура и борная кислота издавна применяется в медицине как антисептики.

Физиологическая и биологическая активность бора очень высока. Бор способен влиять на важнейшие процессы биохимии животных и растений. Вместе с Mn, Cu, Zn и Мо бор входит в число пяти жизненно важных микроэлементов. Бор концентрируется в костях и зубах, в мышцах, в костном мозгу, печени и щитовидной железе. Вероятно, что он ускоряет рост и развитие организмов. Это видно из влияния бора на растения. При борном голодании значительно уменьшается урожай и особенно количество семян. Для жизнедеятельности животных важно его нахождение в молоке (коровьем) и в желтке куриных яиц. Некоторые растения (кормовые травы и сахарная свекла) собирают по несколько граммов бора с гектара угодий. Бор содержится в значительных количествах в жировых тканях некоторых животных, пасущихся на пастбищах, обогащенных бором. Состав соединений бора в организме неизвестен. Установлено, что бор тормозит кишечную амилазу и кишечные протеиназы, усиливает действие инсулина и тормозит окисление адреналина, ослабляет витамины В2 и В12. При избытке бора появляются борные энтериты. Избыточное содержание бора ведет к заболеванию растений. Пшеница и овес страдают при наличии 0,7 - 0,8 мгВ/кг почвы. Борьба с засолением почв бором ведется с помощью промывки борных почв [9-11].

3.1.2 Алюминий

3.1.2.1 Распространение в природе

По своей распространенности алюминий среди элементов занимает третье место, среди металлов - первое. Он встречается главным образом в виде двойных силикатов, в полевых шпатах и слюдах и в продуктах их выветривания - глинах. В свободном состоянии алюминий никогда не встречается. Окись алюминия Al2O3 встречается в виде корунда и наждака. Из гидроокисей боксит AlO(OH) имеет наибольшее техническое значение в качестве основного исходного продукта для получения, Большое значение имеет также криолит Na3AlF6.

Из двойных силикатов следует отметить: калиевый полевой шпат или ортоклаз K[AlSi3O8] - главная составная часть изверженных пород: гранита, сленита, базальта, кальциевый полевой шпат или анорит Сa[Al2Si2O8], плагиоглаз, далее слюды: биотит, мусковый лепидалит, которые также содержатся в изверженных породах. Силикат алюминия, содержащий фтор - топаз, относится к числу драгоценных камней Al2(OH, F)2[SiO4] [9-11].

При выветривании полевых шпатов образуется каолин (фарфоровая глина), содержащий воду силикат алюминия состава Al2O3. 2SiO2. 2H2O.

3.1.2.2 Биохимическая роль

Сульфат алюминия Al2(SO4)3 используется в качестве протравы при крашении, для дубления кожи, в бумажном производстве. Сульфат алюминия применяют для очистки природных вод от коллоидных частиц, загрязняющих воду, которые захватываются гидроксидом алюминия, образующимся при этом гидролизе соли.

Алюминий имеет большое биологическое значение. Низкие концентрации ионов алюминия Al3+ стимулируют некоторые процессы жизнедеятельности растений. Например, прорастание семян. Но более высокие концентрации снижают интенсивность фотосинтеза, нарушают фосфорный обмен, задерживают рост корневой системы. Некоторые производные алюминия применяют в медицине. Например, KAl(SO4)2 служит вяжущим средством. Основной ацетат алюминия AlOH(COOCH3)2 используется для дезинфекции [9-11].

3.1.3 Галлий

3.1.3.1 Распространение в природе

Галлий встречается в природе как спутник цинка во многих обманках, но только в исключительно малых количествах (0,002 % и меньше). В виде следов он встречается почти как постоянный спутник алюминия. В всех сортах технического алюминия его можно открыть спектрально. Самый богатый галлием минерал - германит. В нем содержится 0,6 - 0,7 % галлия [9].

3.1.3.2 Токсикологическая характеристика

Долгое время считалось, что галлий токсичен. Лишь в последнее время это мнение было опровергнуто. Легкоплавкость галлия представляет интерес для стоматологов. Еще в 1930 г. была испытана композиция для пломбирования зубов, в которой ртуть Hg была заменена на галлий. И в настоящее время используются пломбы для пломбирования зубов с использованием галлия [10].

3.2 V-A группа периодической системы

3.2.1 Круговорот азота

Газообразный N2 возникает в результате реакции окисления NHH3, образующегося при извержении вулканов и разложении биологических отходов:

4NH3 + 3O2® 2N2 + 6H2O.

Круговорот азота – один из самых сложных, но одновременно самых идеальных круговоротов. Несмотря на то, что азот составляет около 80% атмосферного воздуха, в большинстве случаев он не может быть непосредственно использован растениями, т.к. они не усваивают газообразный азот. Вмешательство живых существ в круговорот азота подчинено строгой иерархии: только определённые категории организмов могут оказывать влияние на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в атмосферу в результате работы некоторых бактерий, тогда как другие бактерии – фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его, преобразуя в нитраты. Неорганическим путём нитраты образуются и в атмосфере в результате электрических разрядов во время гроз.

Самые активные потребители азота – бактерии на корневой системе растений семейства бобовых. Каждому виду этих растений присущи свои особые бактерии, которые превращают азот в нитраты. В процессе биологического цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее образуются отходы в виде погибших организмов, являющихся объектами жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так возникает новый цикл круговорота. Существуют организмы, способные превращать аммиак в нитриты, нитраты и в газообразный азот. Основные звенья круговорота азота в биосфере представлены схемой на рис. 10.

Рис. 10. Круговорот азота

Биологическая активность организмов дополняется промышленными способами получения азотосодержащих органических и неорганических веществ, многие из которых применяются в качестве удобрений для повышения продуктивности и роста растений.