Смекни!
smekni.com

Элементы интегрального исчисления в курсе средней школы (стр. 3 из 3)

В простейшем случае, когда мгновенная скорость постоянна, путь, пройденный телом, равен произведению его скорости на время движения. В общем случае, когда мгновенная скорость непостоянна, поступают следующим образом:

Сравнивая результаты решения этих двух задач, формулируем общий метод решения: разбиение отрезка, на котором задана функция, на равные части; составление суммы вида

, которая принимается в качестве приближенного значения искомой величины; выполнение предельного перехода:
. Такие пределы встречаются при решении многих задач из разных областей науки и техники. Поэтому они получили специальное название "интеграл функции f(x) от a до b" и обозначение
. Таким образом, по определению:

,

где f(x) – непрерывная на [a,b] функция;

- точки, разбивающие отрезок [a,b] на равные части;
- длина каждой из этих частей.

Запишем результаты решенных задач. Площадь криволинейной трапеции, заданной непрерывной функцией f(x) на [a,b],

Путь, пройденный материальной точкой за промежуток времени от

до
со скоростью
, где
- непрерывная на отрезке
функция,

.

Сравнивая формулы площади криволинейной трапеции

и
,

получаем:

,

где F – первообразная для f на [a,b] – формула Ньютона-Лейбница, позволяющее вычислять интегралы.

Анализ материала учебных пособий, связанных с введением понятия "интеграл" и получением способа вычисления интегралов, приводят к следующим важным в методическом отношении выводам:

1) определение интеграла и формула Ньютона-Лейбница дают возможность доказать ряд часто применяемых свойств интеграла. В процессе доказательства этих свойств понятие интеграла и его геометрический смысл усваиваются глубже. Можно предложить, например, установить справедливость следующих утверждений:

a)

b) если функция f имеет на отрезке [a,b] первообразную, то


,

где C – некоторая постоянная;

c) доказать формулу вычисления производной от интеграла с переменным верхним пределом интегрирования:

,

где f(x) – функция, непрерывная на интервале, содержащем точки a и x.

Предложенные упражнения полезны ещё и потому, что в процессе их решения устанавливаются (и используются) связи между операциями дифференцирования и интегрирования, между понятиями "производная", "первообразная", "интеграл" и их свойствами.

2) Понятие "интеграла" вводится для функции непрерывной на некотором отрезке (такая функция имеет на этом отрезке первообразную). Сознательному усвоению учащимися этого понятия (и понятия первообразной) будет способствовать специальное привлечение внимания школьников к этому факту. С этой целью могут быть использованы задачи, например, такие:

Задача№1 Возможно ли вычислить

? (подынтегральная функция имеет точку разрыва
), принадлежащую отрезку
).

Задача№2 Найти ошибку в вычислении интеграла:


(о том, что ошибка действительно допущена, свидетельствует результат: интеграл от положительной функции оказался отрицательным числом).

Задача№3 При каких значениях пределов интегрирования интеграл существует:

?

В точках 5 и –5 подынтегральная функция терпит разрыв; поэтому можно говорить о следующих условиях, которым должны удовлетворять значения пределов интегрирования:

Задача№4 Вычислить: а)

; б)
; в)

(в двух последних случаях интегралы не могут быть вычислены, т.к. подынтегральная функция не определена в каждой точке отрезка, заданного проделами интегрирования).

3) Установление связи понятий "интеграл" и "первообразная" происходит через обращения к площади соответствующей криволинейной трапеции. Уделяя внимание геометрическому смыслу интеграла, не следует ограничиваться только геометрической иллюстрацией в процессе решения задач на вычисление интегралов. Целесообразно специально подчеркнуть, что, опираясь на геометрический смысл интеграла, иногда получаем возможность: установить существование более простого по сравнению с рассмотренным способом вычисления интегралов (например, по симметричному относительно точки 0 промежутку от четной или нечетной функции). Сделать это можно, обратившись к задачам: не только вычислять площадь фигур, но и находить числовые значения интеграла, вычисление которых по известным учащимся формулам выполнить не удается. Например:

.

Задача№1 Показать, что если f – непрерывная, четная на отрезке [-a,a] функция, то:

.

Задача№2 Показать, что если f – непрерывная, нечетная на отрезке [-a,a] функция, то:

.

Вычислить:

;
;
.

Заключение

В качестве основных задач, решённых в процессе изучения темы, можно выделить следующие:

· введение понятий первообразной и интеграла;

· ознакомление учащихся с основными свойствами первообразных и правилами нахождения первообразных;

· раскрытие смысла операции интегрирования как операции, обратной по отношению к операции дифференцирования заданной функции:

провести классификацию типов задач (нахождение площади криволинейной трапеции, нахождение объёма тела, задачи с физическим содержанием), показать, каким образом реализуется метод интегрального исчисления. При этом обратить внимание на выделение в процессе их решения этапов, характеризующих процесс математического моделирования.


Литература

1. К.О. Ананченко "Общая методика преподавания математики в школе", Мн., "Унiверсiтэцкае",1997г.

2.Н.М.Рогановский "Методика преподавания в средней школе", Мн., "Высшая школа", 1990г.

3.Г.Фройденталь "Математика как педагогическая задача",М., "Просвещение", 1998г.

4.Н.Н. "Математическая лаборатория", М., "Просвещение", 1997г.

5.Ю.М.Колягин "Методика преподавания математики в средней школе", М., "Просвещение", 1999г.

6.А.А.Столяр "Логические проблемы преподавания математики", Мн., "Высшая школа", 2000г.