Смекни!
smekni.com

Методика решения иррациональных уравнений и неравенств в школьном курсе математики (стр. 5 из 10)

Школьники довольно часто добавляют к этой системе неравенство

. Однако этого делать не нужно и даже опасно, поскольку условие
автоматически выполняется для корней уравнения
, в правой части которого стоит неотрицательное выражение. [9]

Пример 2. Решить уравнение

.

Решение. Это уравнение равносильно системе

Решая первое уравнение этой системы, равносильное уравнению

, получим корни
и
.

Второй корень не удовлетворяет неравенству системы и, следовательно, является посторонним корнем исходного уравнения.

Ответ.

.

При решении иррациональных уравнений полезно перед возведением обеих частей уравнения в некоторую степень "уединить радикал", то есть представить уравнение в виде

.

Тогда после возведения обеих частей уравнения в n-ую степень радикал справа исчезнет. [4]

Пример 3. Решить уравнение

Решение. Метод уединения радикала приводит к уравнению

. Это уравнение равносильно системе

Решая первое уравнение этой системы, получим корни

и
, но условие
выполняется только для
.

Ответ.

.

Полезно запомнить схему решения еще одного вида иррациональных уравнений

. Такое уравнение равносильно каждой из двух систем

Поскольку после возведения в четную степень получаем уравнение-следствие

. Мы должны, решив его, выяснить, принадлежат ли найденные корни области определения исходного уравнения, то есть выполняется ли неравенство
(или
). На практике из этих систем выбирают для решения ту, в которой неравенство проще. [9]

Пример 4. Решить уравнение

.

Решение. Это уравнение равносильно системе

Решая первое уравнение этой системы, равносильное уравнению

, получим корни
и
.

Однако при этих значениях x не выполняется неравенство

, и потому данное уравнение не имеет корней.

Ответ. Корней нет.

Теперь можно перейти к решению иррациональных уравнений, не относящихся к простейшим.

Пример 5. Решить уравнение

.

Решение. Возведем обе части уравнения в квадрат и произведем приведение подобных членов, перенос слагаемых из одной части равенства в другую и умножение обеих частей на

.

В результате получим уравнение

, (1)

являющееся следствием исходного.

Снова возведем обе части уравнения в квадрат. Получим уравнение

,

которое приводится к виду

.

Это уравнение (также являющееся следствием исходного) имеет корни

,
. Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Ответ.

,
.

Тождественные преобразования при решении иррациональных уравнений

При решении иррациональных уравнений и неравенств часто приходится применять тождественные преобразования, связанные с использованием известных формул. К сожалению, эти действия иногда столь же небезопасны, как уже рассмотренное возведение в четную степень, - могут приобретаться или теряться решения. [17]

Обсудим несколько ситуаций, в которых эти проблемы наступают, и посмотрим, как их распознать и как можно с ними бороться.

I. Пример 6. Решить уравнение

.

Решение. При первом же взгляде на это уравнение возникает мысль избавиться от корня с помощью "преобразования"

.

Но это неверно, так как при отрицательных значениях x оказывалось бы, что

.

Необходимо запомнить формулу

. Уравнение теперь легко решается

.

Ответ.

.

Теперь посмотрим "обратное" преобразование.

Пример 7. Решить уравнение

.

Решение. Сейчас настало время задуматься о безопасности формулы

.

Нетрудно видеть, что ее левая и правая части имеют разные области определения и что это равенство верно лишь при условии

. Поэтому исходное уравнение равносильно системе

Ответ.

.

II. Следующее преобразование, которое должно явиться предметом заботы для каждого, кто решает иррациональные уравнения, определяется формулой

.

Если пользоваться этой формулой слева направо, расширяется ОДЗ и можно приобрести посторонние решения. Действительно, в левой части обе функции

и
должны быть неотрицательны; а в правой неотрицательным должно быть их произведение. [17]

Замечание. При возведении уравнения в квадрат учащиеся нередко в уравнении типа (1) из Примера 5 производят перемножение подкоренных выражений, т.е. вместо такого уравнения пишут уравнение

.

Такое "склеивание" не приводит к ошибкам, поскольку такое уравнение является следствием уравнения (1). Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения. Поэтому в рассмотренном выше примере можно было сначала перенести один из радикалов в правую часть уравнения, т.е. уединить один радикал. Тогда в левой части уравнения останется один радикал, и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональное выражение. [3]

Пример 8. Решить уравнение

.

Решение. Уединив первый радикал, получаем уравнение

,

равносильное исходному.

Возводя обе части этого уравнения в квадрат, получаем уравнение

,