Смекни!
smekni.com

Факультативный курс по теме "Элементы комбинаторики" для 8 класса (стр. 4 из 8)

В одной и той же задаче можно выбрать разную систему перебора, и каждый ученик сам решает, как он будет действовать. Так, например, при решении приведенной выше задачи можно было ориентироваться на сидящего посередине (или у прохода):

С.М.Д. М.С.Д. М.Д.С. С.М.Д. М.Д.С. Д.С.М

Д.М.С. Д.С.М. С.Д.М. М.С.Д. Д.М.С. С.Д.М.

Можно предложить учащимся использовать прием, заключающийся во временном уменьшении числа элементов и составлении требуемых в задаче комбинаторных соединений на основе найденных вариантов для меньшего числа элементов. Например, задача: «Сколько разных фигур можно составить на листе бумаги из четырех одинаковых квадратов при условии, что квадраты соприкасаются точно по сторонам?» Чтобы ее решить, учитель предлагает детям сначала все возможные фигуры из трех квадратов. Затем взять первую фигуру, составленную из трех квадратов, и по-разному присоединять к ней четвертый квадрат, следя за тем, чтобы не получились одинаковые фигуры. Также предлагается действовать и со второй фигурой, составленной из трех квадратов (рис 2).

Рис. 2

Рис. 3

После того как школьники убедятся в преимуществе систематического перебора, им следует показать, что есть и такие задачи, в которых не стоит искать какую-либо систему перебора. Это задачи комбинаторной геометрии. Комбинаторная геометрия – это раздел математики, который занимается вопросами расположения и комбинаций фигур. Например, нужно из деталей, изображенных на рис. 3, выложить «лесенку», по заданному контуру (рис. 4). Различные решения (рис. 5, 6, 7,) находятся в процессе хаотичного перебора, так в этой задаче можно быстрее и легче выполнить требуемое.

Рис. 4 Рис. 5 Рис. 6 Рис. 7

При решении комбинаторных задач в некоторых случаях у школьников могут возникать затруднения в различении составляемых соединений, связанных с тем, что для определения их неразличимости нужно выполнить определенные геометрические преобразования.

Составление комбинаторных соединений происходит с опорой на запись. Следовательно, в задачах, в которых элементы являются реальными предметами, стоит проблема их обозначения. И если в начале обучения используются конкретные, наглядные заместители реальных предметов, то в дальнейшем учащиеся постепенно переходят к применению условных обозначений. Например, задача: «На каждом флажке должны быть три горизонтальные полоски: красного, синего и белого цвета. Сколько можно получить различных флажков, если менять порядок расположения цветов?» Решая ее, можно выбрать различные способы обозначения флажков.

Рис. 8

Непосредственный перебор всех возможных вариантов при решении комбинаторных задач в некоторых случаях может быть затруднен. Облегчить процесс нахождения этих вариантов можно, научив детей пользоваться такими средствами перебора, как таблицы и графы. Они позволяют расчленить ход рассуждений, четко провести перебор, не упустив каких-либо имеющихся возможностей. Решение задач с использованием таблиц и графов является основным содержанием третьего этапа, выделяемого в обучении школьников решению комбинаторных задач.

Сначала как с наиболее простым средством организации перебора учащиеся знакомятся с таблицами. Рассматривая таблицу (рис. 9) ученики открывают принцип её составления. Затем им предлагают заполнить другую таблицу. Проговариваются разные способы заполнения: по строчкам, по столбцам.

В дальнейшем в целях освоения принципа составления таблиц используются и такие задания:

1. Запиши в нужные клетки таблицы (рис. 10) следующие числа: 57, 75, 44, 47, 55, 77, 47. Какие числа нужно записать в оставшиеся клетки?

2. Проверь, правильно ли заполнена таблица (рис. 11).

Когда школьники научатся составлять таблицы, можно переходить к решению комбинаторных задач с их использованием. Как правило, дети неоправданно много времени тратят на вычерчивание самой таблицы: затрудняются определить нужные размеры, разметить все строчки и столбики.

Для того чтобы помочь детям разметить таблицу, методистами были разработаны специальные трафареты (рис. 12). Опишем, как действуют учащиеся, решая с помощью таблицы задачу: «В одной деревне по сложившейся традиции мужчин называют каким-либо из следующих имен: Иван, Петр, Василий и Михаил. Проживают в этой деревне 15 мужчин. Может ли оказаться так, что в деревне нет мужчин с одинаковым именем, отчеством?» Ученик накладывает на тетрадный лист трафарет. Вписывает через «окошечки» на трафарете в верхнюю строчку и в первый столбик данные задачи. Через прорези намечает места записи составляемых объектов. Убирает трафарет. Цветными линиями отчерчивает данные задачи (рис. 13).

Затем ученик заполняет таблицу (рис. 14), подсчитывает число всех возможных отличающихся имен-отчеств, сравнивает с числом мужчин в деревне и отвечает на вопрос задачи.

При заполнении таблиц нужно каждый раз определять, следует записывать составляемое

Рис. 16

Составляются недостающие рукопожатия (эти линии лучше проводить другим цветом, так как потом легче будет подсчитывать общее число рукопожатий). И так действуют до тех пор, пока все не поздороваются друг с другом. По получившемуся графу (рис. 16) подсчитывается число рукопожатий (их всего 10).

Следующая задача: «Сколько двузначных чисел можно составить, используя цифры 1, 2, 3, 4?» приводит учащихся к изображению ориентированного графа (рис. 17). Идея проведения стрелок возникает, когда учащиеся задумываются

Рис. 17

как обозначить, например, число 12: показать, что оно начинается с цифры 1, а оканчивается цифрой 2. петля появляется при обозначении, например, числа 11: стрелка должна начинаться и заканчиваться на одной и той же цифре. Открыв для себя на первых задачах эти условные обозначения (точки, линии, стрелки, петли), учащиеся в дальнейшем применяют их при решении различных задач, составляя графы того или иного вида. Приведем некоторые примеры.

1. В финал турнира по шашкам вышли два российских игрока,

Рис. 18

два немецких и два американских. Сколько партий будет в финале, если каждый играет с каждым по одному разу и представители одной страны между собой не играют? (граф на рис. 18)

Рис. 19

2. В зале лежали конфеты четырех сортов. Каждый ребенок взял по 2 конфеты. И у всех оказались отличающиеся наборы конфет. Сколько могло быть детей? (граф на рис. 19)

3. Сколько разностей можно составить из чисел 30, 25, 17, 9, если для их составления брать по 2 числа? Будут ли среди них разности, значения которых равны? (граф на рис. 20)

Можно предлагать учащимся и обратные задания: составить задачу по имеющемуся графу. Например: «Рассмотри внимательно граф (на рис. 21) и пофантазируй, о какой ситуации он может тебе рассказать». Ученики, рассуждая, что точки могут обозначать людей, предметы, а линии говорят о том, что из них образуются пары, составляют разные варианты задач, например

Рис. 20 Рис. 21

1. Четыре подружки вечером по телефону созваниваются друг с другом. Сколько звонков было сделано, если каждая подружка поговорила с каждой по одному разу?

2. В магазине продаются елочные шары четырех видов. Сколько отличающихся наборов, состоящих из двух разных шаров, можно с, состоящих из двух разных шаров, можно составить?

Примеры задач, которые можно решать с помощью таблиц и графов:

1. На фабрике есть стержни для ручек четырех цветов: красного, синего, зеленого и черного. Сколько различных трехцветных ручек можно при этом собрать?