Смекни!
smekni.com

Методика применения ЦОР в процессе изучения темы Электромагнитные колебания (стр. 7 из 8)

.

Превращение потенциальной энергии пружины в кинетическую энергию колеблющегося тела является механической аналогией превращения энергии электрического поля конденсатора в энергию магнитного поля катушки. При этом аналогом механической потенциальной энергии пружины является энергия электрического поля конденсатора, а аналогом механической кинетической энергии груза является энергия магнитного поля, которая связана с движением зарядов. Зарядке конденсатора от батареи соответствует сообщение пружине потенциальной энергии (например, смещение рукой).

Давайте сопоставим формулы и выведем общие закономерности для электромагнитных и механических колебаний.

Из сопоставления формул следует, что аналогом индуктивности L является масса m, а аналогом смещения х служит заряд q, аналогом коэффициента k служит величина, обратная электроемкости, т. е. 1/С.

Моменту, кода конденсатор разрядится, а сила тока достигнет максимума, соответствует прохождение телом положения равновесия с максимальной скоростью (обратите внимание на экраны: там вы можете пронаблюдать это соответствие).

Далее при перезарядке конденсатора тело будет смещаться влево от положения равновесия. Через промежуток времени, равный t=T/2, конденсатор полностью перезарядится и сила тока в цепи станет равной нулю.

Как уже было сказано на прошлом занятии, движение электронов по проводнику является условным, ведь для них основным видом движения является колебательное движение около положения равновесия. Поэтому иногда еще электромагнитные колебания сравнивают с колебаниями воды в сообщающихся сосудах (посмотрите на экран, вы видите, что в правом верхнем углу находится именно такая колебательная система), где каждая частица совершает колебания около положения равновесия.

Итак, мы выяснили, что аналогией индуктивности является масса, а аналогией перемещения является заряд. Но вед вы прекрасно знаете, что изменение заряда в единицу времени – это не что иное, как сила тока, а изменение координаты в единицу времени – скорость, то есть q= I, а x= v. Таким образом, мы нашли еще одно соответствие между механическими и электрическими величинами.

Давайте составим таблицу, которая поможет нам систематизировать связи механических и электрических величин при колебательных процессах.

Таблица соответствия между механическими и электрическими величинами при колебательных процессах.

Урок №3.

Тема урока: Уравнение свободных гармонических колебаний в контуре.

Объяснение нового материала.

Цель урока: вывод основного уравнения электромагнитных колебаний, законов изменения заряда и силы тока, получения формулы Томсона и выражения для собственной частоты колебания контура с использованием презентаций PowerPoint.

Материал для повторения:

· понятие электромагнитных колебаний;

· понятие энергии колебательного контура;

· соответствие электрических величин механическим величинам при колебательных процессах.

(Для повторения и закрепления необходимо еще раз продемонстрировать модель аналогии механических и электромагнитных колебаний).

На прошлых уроках мы выяснили, что электромагнитные колебания, во-первых, являются свободными, во-вторых, представляют собой периодическое изменение энергий магнитного и электрического полей. Но кроме энергии при электромагнитных колебаниях меняется еще и заряд, а значит и сила тока в контуре и напряжение. На этом уроке мы должны выяснить законы, по которым меняются заряд, а значит сила тока и напряжение.

Итак, мы выяснили, что полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей:

. Считаем, энергия не меняется со временем, то есть контур – идеальный. Значит производная полной энергии по времени равна нулю, следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

, то есть
.

Знак минус в этом выражении означает, что когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. А физический смысл этого выражения таков, что скорость изменения энергии магнитного поля равна по модулю и противоположна по направлению скорости изменения электрического поля.

Вычисляя производные, получим

.

Но

, поэтому
и
- мы получили уравнение, описывающее свободные электромагнитные колебания в контуре. Если теперь мы заменим q на x, х’’х на q’’, k на 1/C, m на L, то получим уравнение

,

описывающее колебания груза на пружине. Таким образом, уравнение электромагнитных колебаний имеет такую же математическую форму, как уравнение колебаний пружинного маятника.

Как вы видели на демонстрационной модели, заряд на конденсаторе меняется периодически. Необходимо найти зависимость заряда от времени.

Из девятого класса вам знакомы периодические функции синус и косинус. Эти функции обладают следующим свойством: вторая производная синуса и косинуса пропорциональна самим функциям, взятым с противоположным знаком. Кроме этих двух, никакие другие функции этим свойством не обладают. А теперь вернемся к электрическому заряду. Можно смело утверждать, что электрический заряд, а значит и сила тока, при свободных колебаниях меняются с течением времени по закону косинуса или синуса, т.е. совершают гармонические колебания. Пружинный маятник также совершают гармонические колебания (ускорение пропорционально смещению, взятому со знаком минус).

Итак, чтобы найти явную зависимость заряда, силы тока и напряжения от времени, необходимо решить уравнение

,

учитывая гармонический характер изменения этих величин.

Если в качестве решения взять выражение типа q = qm cos t , то, при подстановке этого решения в исходное уравнениe, получим q’’=-qmcos t=-q.

Поэтому, в качестве решения необходимо взять выражение вида

q=qmcosщot,

где qm – амплитуда колебаний заряда (модуль наибольшего значения колеблющейся величины),

щo =

- циклическая или круговая частота. Её физический смысл –

число колебаний за один период, т. е. за 2р с.

Период электромагнитных колебаний – промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание. Для гармонических колебаний Т=2р с (наименьший период косинуса).

Частота колебаний – число колебаний в единицу времени – определяется так: н =

.

Частоту свободных колебаний называют собственной частотой колебательной системы.

Так как щo= 2р н=2р/Т, то Т=

.

Циклическую частоту мы определили как щo =

, значит для периода можно записать

Т=

=
- формула Томсона для периода электромагнитных колебаний.

Тогда выражение для собственной частоты колебаний примет вид

.

Нам осталось получить уравнения колебаний силы тока в цепи и напряжения на конденсаторе.

Так как

, то при q = qm cos щo t получим U=Umcosщot. Значит, напряжение тоже меняется по гармоническому закону. Найдем теперь закон, по которому меняется сила тока в цепи.

По определению

, но q=qmcosщt, поэтому

,

где р/2 – сдвиг фаз между силой тока и зарядом (напряжением). Итак, мы выяснили, что сила тока при электромагнитных колебаниях тоже меняется по гармоническому закону.

Мы рассматривали идеальный колебательный контур, в котором нет потерь энергии и свободные колебания могут продолжаться бесконечно долго за счет энергии, однажды полученной от внешнего источника. В реальном контуре часть энергии идет на нагревание соединительных проводов и нагревание катушки. Поэтому свободные колебания в колебательном контуре являются затухающими.


Заключение

В данной дипломной работе была разработана методика изучения электроколебательных процессов с помощью компьютера. Подводя итог можно сделать ряд выводов.

1.В процессе изучения темы “Электромагнитные колебания” рассматриваются свободные электромагнитные колебания и автоколебания в колебательных контурах, а также вынужденные колебания в электрических цепях под действием синусоидальной ЭДС. Все эти вопросы имеют очень большое значение, так как на их основе затем изучаются электромагнитные волны с их научно-практическими приложениями.