Смекни!
smekni.com

I began by looking for a common factor. What is it that both aircraft possess which can cause almost identical failure in a wing- and why only the top plane? There are in fact, 2 unusual structural features present in both. Firstly, the main spars are very closely spaced so that the rib noses project unusually far forward of the spar group. The N28 spars are closely spaced, but maintain an orthodox drag-bracing arrangement of steel tube and piano wire. The Dr.I located the spars with a small separation, so that plywood closing-skins top and bottom formed a single-spar system, accounting for both drag and to a limited extent, torsion.

The other critical feature present in both aircraft was the use of a plywood leading-edge contour panel. This was relatively unusual in WWI. British aircraft seem not to have used it at all, preferring intermediate riblets as leading-edge support; and from a quick appraisal of my library, I have identified only 5 aircraft which had this feature (I don't suppose this to be at a definitive.). These are the Pfalz D.XII Fokkers Dr.I, D.VI and D.VII, and the Nieuport 28 (possibly also the 27).

Some aircraft wings were, of course, totally skinned in sheet plywood or aluminum; but with these exceptions, at least, complete fabric cover was the norm. The use of plywood leading-edge covering presents a problem in the attachment of fabric since stringing (ie, the through-wing stitching normally used) would be required to stop at the plywood-covered surface. This may account for the fact that both the triplane and N28 are reported as originally having the fabric tacked to the rib flanges rather than being sewn (which was considered to be the correct way). The fabric attachment itself is therefore suspect but the test still remains; why only failures of the upper wing? If the fabric attachment was the critical factor, then failures could have occurred in any wing with this feature, which would have included lower planes of both the triplane and the N28.

Both aircraft have structurally suspect features in their wing leading-edges. In the case of the N28, the long rib-noses would produce large bending stresses (during violent manoeuvres) at their main-spar attachment locations. Large bending stresses can have attendant large shear stresses; and on the N28, these would exist in the thin poplar rib-webs (typical of the period). This is a very risky arrangement, since timber is not particularly strong when subject to shear loading along the grain - plywood is much better. (The N28 rib-noses had very little shear material anyway)

The other suspect feature is that of the omission of rib-capping referred to in the recent WWI AERO article. These details appear peculiar to the N28, and are at the most extreme in the upper wing. There is little doubt that the upper wing leading edge was simply of marginal strength; and at first sight it seems odd that sandloading did not reveal this weakness. But of course this reveals a weakness of sand-loading. The chordwise distribution of lift, at high angles of attack, will not normally be represented by a heap of sand, since dry sand slumps to approximately 45 deg- forming a triangular load distribution with a centrally-located center of gravity. (This can be modified within limits by constructing walls along the wing edges.) Sandloading therefore successfully tests the wingspar adequacy, but is insufficient to the task of testing the rib nose strength (and remember that here we have 2 aircraft which resolutely held on to their spars, whilst liberally shedding secondary structure). This proof-loading problem is exacerbated by the fact that wing lift (particularly at large angles of attack) is largely generated by the negative pressure zone existing on the forward upper surface (see Fig 18- taken from SIMPLE AERODYNAMICS (1929), by Charles N Monteith.).

The critical structural requirement under these loading conditions is to have adequate "peel" strength between the upper skin and the substructure (ribs and/or stringers etc). Both the N28 and the Dr.I were deficient here. The Nieuport was devoid of rib cap-strips or spanwise stringers at the critical location; the Dr.I leading-edge plywood was severely cut away at each rib, had no supporting stringers, and had only minor connection to the main spar. With this arrangement, a significant amount of the local lift- would have been transmitted in a peel condition from the plywood skin to the supporting ribs - there was no other load-path. Again, this is a very unreliable form of joint. Today, the attachment of wing skins to substructure remains a critical factor; in fact, where fuel is carried inside a wing much of the wing design is overridingly determined by this consideration.

So, the Nieuport had a weak upper-wing leading edge and larger chord to boot. This could (as suggested in the WWI AERO article) be the complete answer to the N28 failures. But the Triplane had the same design condition on all wings, but only the top wing ever failed. So there was something else.

It is not common to see a biplane or triplane wing cellule in which equal-chord wings are of differing span, although some famous aircraft such as the BE- 12, RE-8 and Curtiss Jenny are exceptions. Typically, where an upper wing is of greater span, it is often of greater chord also. This has the virtue of approximately maintaining constant aspect-ratio for each wing in the complete wing system. (To what extent this represented a design objective at the time I have no information.)

The fact that real wings are of finite span (as opposed to the theoretically infinite span wing which is implicit in aerofoil section data) means that a real wing will attain a particular lift coefficient at an angle of attack somewhat greater than that apparent from he section-data. It also follows that wings of differing aspect ratio, but identical section, will generate different lift-intensities, to one another, when operating at the same angle of attack.

The Dr.1 had aspect ratios of 6.8, 5.9 and 5.1 for the upper, middle and lower planes respectively. The wing section (tested as the Gottingen 289 section after the war) had a maximum lift coefficient of about 1.4. Making estimates for each of the triplane wings (working as independent surfaces), the planes would require 19.2, 20 and 21 degrees respectively to reach the maximum lift coefficient. When working at the same angle of attack (as in the aircraft alignment), the upper wing would produce a lift intensity about 9% greater than the lower wing. So could aspect-ratio be the cause of the Triplane wing failures? Well no, I am afraid not. A 9% increased lift intensity cannot be considered sufficient to always fail the upper wing before one or the other planes. Variations in material strength and build quality would both have similar (or greater) tolerance, which would occasionally bias the failure to one of the other planes. There has to be something else – something more emphatic.

I found the answer by chance, and I found it in a ‘history’ book. Whilst flipping through a copy of SIMPLE AERODYNAMICS (1929), by Charles N Monteith, (Chief Engineer, Boeing), looking for data on the Gottingen 289 section, I came across a particularly relevant passage under Item 70, p89, “Pressure distribution tests on MB-3A Airplane”, which is reproduced in facsimile here:

Paragraphs B and C are telling. The loading distribution noted is very significant over the biplane system described. A factor of 1.6 at high-lift coefficients cannot be ignored. The Triplane system with its relatively smaller wing gaps and pronounced stagger would almost certainly have a greater value than this. Together with aspect-ratio effects it is not unreasonable to suggest that the lift intensity of the upper wing of the Dr.I approached twice that of the bottom wing. This is certainly enough to test the upper wing integrity before the rest of the system.

Conclusion

I would suggest that the Dr.I wing failures (and almost certainly those of the N28, too) occurred because lift-grading (particularly), together with aspect-ratio effects, caused the upper surface of the upper wing to be subject to much greater lift intensity than the rest of the system. This tested a leading-edge design of marginal strength, poorly made, to the point of collapse in particular aircraft. The leading edge failure continued back across the wing due to design details. Where rib tails, for example, were connected by a wire trailing edge, ballooning fabric will exert tensile loading in this wire which will then tend to "gather up" the rib tails and strip the wing. This would also destabilize the area of the aileron support structures, and so on. The strengthening of the wing aft of the spars and the improvements to build quality, carried out after the original failures, would have acted to prevent this catastrophic failure. But the root cause of the failure lift-grading) went unappreciated until after the war when investigations like those at NACA were conducted.

It would be fascinating to know to what extent these factors were understood prior to 1918. I expect that the concentration of lift forces (as an intense negative pressure zone at the upper surface LE) was reasonably well appreciated by wind-tunnel investigators- if only by the application of Bernoulli's theorem to the visible flow patterns around test sections. Probably the effects of aspect ratio were understood- even if only qualitatively; but lift-grading would require much more complex investigation. Regarding the aspect-ratio issue; advocates of multiplanes (Horatio Phillips, for example) appear to have worked from the understanding that high aspect-ratio is a "good thing" (true) but not to have had evidence of the detrimental effects of interference between closely-spaced multi-plane wing systems.

But such is the nature of progress - the testing of ideas. It took the lives of airmen to drive the investigations which led to today's understanding of these matters and which allow our complacent and sometimes arrogant review of history.

A final thought. It is theoretically possible for the Fokker triplane to remain airborne on its 2 lower planes alone (of 9.9 square metres area). The stall speed would be about 64mph. No doubt, when both Gontermann and Pastor found themselves in dire straits, they did the natural thing: to pull back on the stick even though the aircraft was deeply stalled. Maybe if they had first pushed... ?

Forces Acting on an Airplane

Airfoils and Lift

The airplane in straight-and-level unaccelerated flight is acted on by four forces. The four forces are lift, gravity, thrust and drag.

The airplane in straight-and-level unaccelerated flight is acted on by four forces--lift, the upward acting force; weight, or gravity, the downward acting force; thrust, the forward acting force; and drag, the backward acting, or retarding force of wind resistance.

Lift opposes gravity.

Thrust opposes drag.

Drag and weight are forces inherent in anything lifted from the earth and moved through the air. Thrust and lift are artificially created forces used to overcome the forces of nature and enable an airplane to fly. The engine and propeller combination is designed to produce thrust to overcome drag. The wing is designed to produce lift to overcome the weight (or gravity).

In straight-and-level, unaccelerated flight, (Straight-and-level flight is coordinated flight at a constant altitude and heading) lift equals weight and thrust equals drag, though lift and weight will not equal thrust and drag. Any inequality between lift and weight will result in the airplane entering a climb or descent. Any inequality between thrust and drag while maintaining straight-and-level flight will result in acceleration or deceleration until the two forces become balanced.

Flight Control Surfaces

Airfoils and Lift

The three primary flight controls are the ailerons, elevator and rudder.

Ailerons: The two ailerons, one at the outer trailing edge of each wing, are movable surfaces that control movement about the longitudinal axis. The movement is roll. Lowering the aileron on one wing raises the aileron on the other. The wing with the lowered aileron goes up because of its increased lift, and the wing with the raised aileron goes down because of its decreased lift. Thus, the effect of moving either aileron is aided by the simultaneous and opposite movement of the aileron on the other wing.

Rods or cables connect the ailerons to each other and to the control wheel (or stick) in the cockpit. When pressure is applied to the right on the control wheel, the left aileron goes down and the right aileron goes up, rolling the airplane to the right. This happens because the down movement of the left aileron increases the wing camber (curvature) and thus increases the angle of attack. The right aileron moves upward and decreases the camber, resulting in a decreased angle of attack. Thus, decreased lift on the right wing and increased lift on the left wing cause a roll and bank to the right.

Elevators: The elevators control the movement of the airplane about its lateral axis. This motion is pitch. The elevators form the rear part of the horizontal tail assembly and are free to swing up and down. They are hinged to a fixed surface--the horizontal stabilizer. Together, the horizontal stabilizer and the elevators form a single airfoil. A change in position of the elevators modifies the camber of the airfoil, which increases or decreases lift.

Like the ailerons, the elevators are connected to the control wheel (or stick) by control cables. When forward pressure is applied on the wheel, the elevators move downward. This increases the lift produced by the horizontal tail surfaces. The increased lift forces the tail upward, causing the nose to drop. Conversely, when back pressure is applied on the wheel, the elevators move upward, decreasing the lift produced by the horizontal tail surfaces, or maybe even producing a downward force. The tail is forced downward and the nose up.

The elevators control the angle of attack of the wings. When back pressure is applied on the control wheel, the tail lowers and the nose raises, increasing the angle of attack. Conversely, when forward pressure is applied, the tail raises and the nose lowers, decreasing the angle of attack.

Rudder: The rudder controls movement of the airplane about its vertical axis. This motion is yaw. Like the other primary control surfaces, the rudder is a movable surface hinged to a fixed surface which, in this case, is the vertical stabilizer, or fin. Its action is very much like that of the elevators, except that it swings in a different plane--from side to side instead of up and down. Control cables connect the rudder to the rudder pedals.

Trim Tabs: A trim tab is a small, adjustable hinged surface on the trailing edge of the aileron, rudder, or elevator control surfaces. Trim tabs are labor saving devices that enable the pilot to release manual pressure on the primary controls.

Some airplanes have trim tabs on all three control surfaces that are adjustable from the cockpit; others have them only on the elevator and rudder; and some have them only on the elevator. Some trim tabs are the ground-adjustable type only.

The tab is moved in the direction opposite that of the primary control surface, to relieve pressure on the control wheel or rudder control. For example, consider the situation in which we wish to adjust the elevator trim for level flight. ("Level flight" is the attitude of the airplane that will maintain a constant altitude.) Assume that back pressure is required on the control wheel to maintain level flight and that we wish to adjust the elevator trim tab to relieve this pressure. Since we are holding back pressure, the elevator will be in the "up" position. The trim tab must then be adjusted downward so that the airflow striking the tab will hold the elevators in the desired position. Conversely, if forward pressure is being held, the elevators will be in the down position, so the tab must be moved upward to relieve this pressure. In this example, we are talking about the tab itself and not the cockpit control.

Rudder and aileron trim tabs operate on the same principle as the elevator trim tab to relieve pressure on the rudder pedals and sideward pressure on the control wheel, respectively.

Laminar Flow Airfoil


Airfoils and Lift

Laminar Flow is the smooth, uninterrupted flow of air over the contour of the wings, fuselage, or other parts of an aircraft in flight. Laminar flow is most often found at the front of a streamlined body and is an important factor in flight. If the smooth flow of air is interrupted over a wing section, turbulence is created which results in a loss of lift and a high degree of drag. An airfoil designed for minimum drag and uninterrupted flow of the boundary layer is called a laminar airfoil.