Смекни!
smekni.com

Акустические методы контроля материалов (стр. 2 из 4)

Измерив амплитуду отраженной волны, мы можем оценить размер отражающего объекта.

Амплитуды (энергии) отраженной от границы двух сред и прошедшей в другую среду зависит от характеристик этих сред. Эта характеристика называется акустическим сопротивлением (характеристическим импедансом) и для каждой среды описывается выражением

z =rC

где r - плотность материала, а C - скорость упругой волны в этом материале.

Амплитуда (энергия) отраженной волны зависит также от формы отражающего тела и его расположения относительно распространяющейся волны. Параметры отраженной волны определяются формой и расположением отражающего тела. Исследуя параметры отраженной волны, мы сможем определить форму дефекта. Это очень важно для оценки степени его опасности (обычно плоскостные дефекты типа трещин более опасны, чем округлые дефекты - поры).

В твердых телах картина отражения и прохождения упругих волн более сложная. Волны не только отражаются от границы раздела, но и преломляются и трансформируются (преобразуются из одного типа в другой). Что под этим понимается? На рис. 4 показана схема падения луча продольной волны под углом на границу раздела двух твердых сред.


Рис. 4 - Преобразование (трансформация) упругих волн при падении на границу раздела двух материалов

Видно, что от границы раздела отражается не одна, а две волны. Одна продольная, а другая сдвиговая (поперечная). Причем угол отражения продольной волны, как и в оптике, равен углу падения продольной волны.

Во вторую среду проходят также две волны. Продольная – с углом, отличным от угла падения, и сдвиговая, угол которой также отличается от угла отражения сдвиговой волны в первом твердом теле. Углы падения, отражения и преломления подчиняются закону Снеллиуса (закон синусов)

Из выражения следует, что угол b равен углу gi, так как скорость распространения в первой среде для продольной волны одинакова. Мы ранее установили, что скорости упругих волн зависят от упругих характеристик материалов и плотностей. Значит, углы отражения и преломления также зависят от упругих свойств материалов и их плотностей. При угле падения равном 900 трансформации упругих волн не происходит. В то же время, замечательное свойство упругих волн отражаться от находящихся внутри материала неоднородностей, отличающихся по акустическим (упругим) характеристикам, используется для обнаружения дефектов. На этом принципе построена вся ультразвуковая дефектоскопия, дефектометрия, толщинометрия и т.д.

Рефракция звука - изменение направления распространения звука в неоднородной среде (атмосфера, океан, толща земли), скорость звука в которой является функцией координат.

Рефракцию звука (РЗ) можно рассматривать как следствие эффекта преломления волн для случаев, когда физические свойства среды непрерывно изменяются от точки к точке в направлении распространения волны. Частным случаем такой среды является макронеоднородная структура, состоящая из множества тонких однородных слоев s1, s2, ..., sn, причем скорость распространения звуковых волн c изменяется от слоя к слою так, что c1 > c2 > ... > cn или с1 < c2 < ...< cn. При прохождении волны через границы между соседними слоями имеют место эффекты отражения и преломления волн, в частности, выполняются законы Снеллиуса и соотношения для коэффициентов прохождения и отражения. Результирующей картиной многократного преломления волнового луча в среде c вышеописанными свойствами является изменение направления луча: он искривляется в сторону меньшей скорости звука. При плоско-слоистой неоднородности среды лучи представляют собой плоские кривые, лежащие в плоскостях, перепендикулярных слоям. Согласно закону Снеллиуса, в таких средах выполняется соотношение (cos q)/ c = const, где q - угол скольжения, которое является уравнением луча.

Более общим случаем является т.н. плавно неоднородная среда, в которой скорость распространения упругих волн является непрерывной функцией координат. Такая среда не является слоистой, поскольку не содержит контрастных, в акустической смысле, границ, на которых выполняются классические законы отражения и преломления.

Рефракция звука является важным фактором, влияющим на распространение звука в атмосфере, океане и толще Земли. Рефракционные эффекты могут наблюдаться также при распространении ультразвука в изделиях и материалах, если скорость звука в них меняется по толщине, например, вследствие поверхностной цементации. Поэтому рефракция звука положена в основу акустических методов контроля качества цементации массивных сооружений (плотин и т.п.) и степени уплотнения грунтов под собственным весом и при внешних нагрузках.

Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет. При одновременном движении в ткани нескольких ультразвуковых волн в определённой точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции. Если в процессе прохождения через биологический объект ультразвуковые волны пересекаются, то в определённой точке биологической среды наблюдается усиление или ослабление колебаний. Результат интерференции будет зависеть от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.

3. Прием и излучение ультразвука

Ультразвук - это упругие колебания и волны с частотами приблизительно от 1,5- 2 ×104гц (15-20 кгц) и до 109 гц (1 Ггц), область частот ультразвука от 109 до 1012-13гц принято называть гиперзвуком. Область частот ультразвука можно подразделить на три подобласти: ультразвук низких частот (1,5×104-105 гц) - УНЧ, ультразвук средних частот (105 - 107 гц) - УСЧ и область высоких частот ультразвука (107-109гц) - УЗВЧ.

Для генерирования ультразвуковых колебаний применяют разнообразные устройства, которые могут быть разбиты на 2 основные группы - механические (источником ультразвука является механическая энергия потока газа или жидкости) и электромеханические (ультразвуковая энергия получается преобразованием электрической). Механические излучатели ультразвука - воздушные и жидкостные свистки и сирены - отличаются сравнительной простотой устройства и эксплуатации, не требуют дорогостоящей электрической энергии высокой частоты, кпд их составляет 10-20%. Основной недостаток всех механических ультразвуковых излучателей - сравнительно широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет их использовать для контрольно-измерительных целей; они применяются главным образом в промышленной ультразвуковой технологии и частично - как средства сигнализации.

Основной метод излучения ультразвука - преобразование тем или иным способом электрических колебаний в колебания механические. В диапазоне УНЧ возможно применение электродинамических и электростатических излучателей. Широкое применение в этом диапазоне частот нашли излучатели ультразвука, использующие магнитострикционный эффект в никеле и в ряде специальных сплавов, также в ферритах. Для излучения УСЧ и УЗВЧ используется главным образом явление пьезоэлектричества. Основными пьезоэлектрическими материалами для излучателей ультразвука служат пьезокварц, ниобат лития, дигидрофосфат калия, а в диапазоне УНЧ и УСЧ - главным образом различные пьезокерамические материалы. Магнитострикционные излучатели представляют собой сердечник стержневой или кольцевой формы с обмоткой, по которой протекает переменный ток, а пьезоэлектрические - пластинку (рис. 5) или стержень из пьезоэлектрического материала с металлическими электродами, к которым прикладывается переменное электрическое напряжение. В диапазоне УНЧ широкое распространение получили составные пьезоизлучатели, в которых пьезокерамическая пластинка зажимается между металлическими блоками.

Рис. 5 - Излучение (приём) продольных волн L пластинкой, колеблющейся по толщине в твердое тело: 1 - кварцевая пластинка среза Х толщиной l/2, где l - длина волны в кварце; 2 - металлические электроды; 3 - жидкость (трансформаторное масло) для осуществления акустического контакта; 4 - генератор электрических колебаний; 5 - твёрдое тело

Предельная интенсивность излучения ультразвука определяется прочностными и нелинейными свойствами материала излучателей, а также особенностями использования излучателей. Диапазон интенсивности при генерации ультразвука в области УСЧ чрезвычайно широк: интенсивности от 10-14-10-15вт/см2 до 0,1вт/см2 считаются малыми. Для многих целей необходимо получить гораздо большие интенсивности, в этих случаях можно воспользоваться фокусировкой ультразвука.

Выбор метода генерации ультразвука зависит от области частот ультразвука, характера среды (газ, жидкость, твёрдое тело), типа упругих волн и необходимой интенсивности излучения.

Вследствие обратимости пьезоэффекта он широко применяется и для приёма ультразвука. Изучение ультразвукового поля может производиться и оптическими методами: ультразвук, распространяясь в какой-либо среде, вызывает изменение её оптического показателя преломления, благодаря чему его можно визуализировать, если среда прозрачна для света.