Смекни!
smekni.com

Атомно-силовая микроскопия (стр. 2 из 3)

3.1 Исследование деформированой поверхности

Все методы описания деформаций можно разделить на две группы в зависимости от того, исследуется ли образец непосредственно в процессе или после деформации. К первой группе относятся, например, наблюдение деформируемого образца под оптическим микроскопом и уникальные эксперименты по деформации углеродных нанотрубок под электронным микроскопом [10]. В таких случаях иногда говорят, что исследование происходит в реальном времени, in situ. Ко второй группе относятся эксперименты, в которых деформация и изучение образца производятся на разных устройствах. В этом случае экспериментатора обычно интересуют средние, общие характеристики и параметры образца, а не особенности его конкретной точки или области[5].

В таком контексте применение атомно-силовой микроскопии для описания деформаций поверхности имеет особое место. Для того, чтобы наблюдать деформацию поверхности в АСМ, необходимо ступенчато увеличивать нагрузку, и при каждом ее значении исследовать поверхность. По-видимому, первой работой, в которой, предложен такой эксперимент, была статья [3]. Схема использованной авторами установки показана на рис. 1. Пленка ориентированного полиэтилентерефталата (ПЭТФ) размещалась в специальном зажиме, на который сверху устанавливался АСМ. Проводилось сканирование участка поверхности вблизи заметного в оптический микроскоп дефекта, затем образец деформировался. Рис 1 Схема установки для деформации пленок и наблюдения в АСМ [3] Один из зажимов неподвижен. Специальная система винтов позволяла корректировать положение АСМ так, чтобы после деформации можно было вновь исследовать тот же самый участок. Прикладываемое к образцу напряжение измерялось специальным датчиком, а величина деформации измерялась по смещению микроскопических дефектов и неровностей на кадре размером 50*50мкм. Таким методом была получена силовая кривая и измерен коэффициент Пуассона. Было показано, что отношение боковой контракции к продольной деформации растет в процессе вытяжки от 0,25 при деформации 25% до 0,45 при деформации 50%[2,5].

В работе тех же авторов [4] исследовалась пленка из полиимида. В процессе вытяжки образца макроскопическая деформация (между зажимами) сравнивалась с микроскопической (измеренной на масштабах 50 мкм и 5мкм).

Авторами было показано, что эти кривые в пределах погрешности совпадают, т.е. наблюдается аффинная деформация образца. Авторы работы [5] предложили использовать аналогичный метод для измерения коэффициента Пуассона тонких пленок, изготовленных из различных материалов (ПЭТФ, полиэтил).

3.2 Необходимость. Проблематика

Развитие современной полупроводниковой технологии было бы немыслимо без микроскопических способов исследования. Требования к интеграции полупроводниковых логических элементов, уменьшению их размеров, улучшения качества задают необходимость в точной диагностике границ раздела. Развитие процессов самоорганизации на поверхностях полупроводников, систем молекулярно-лучевой эпитаксии, нанолитографии несёт за собой развитие новых полупроводниковых технологий.

К сожалению электронная микроскопия ограничена в своих возможностях по исследованию и диагностике поверхности. Наряду с огромными плюсами, которые она имеет (например, возможность иметь в каждый момент информацию о всей поверхности, возможность реализации in-situ экспериментов), существует несколько неоспоримых недостатков. К таковым относятся, в первую очередь, необходимость достаточного вакуума для получения относительно хорошего разрешения (нет возможности исследовать жидкостные объекты), отсутствие возможности просмотра больших образцов, достижение атомного разрешения в критических для поверхности условиях, когда энергия пучка электронов достигает величины до 300 КэВ[3].


4. Сканирующий туннельный микроскоп

4.1 Открытие

В связи с этим неоспоримым достижением стало открытие 1982 году (момент опубликования в Phys. Rev. Lett.) Генрихом Рорером и Гердом Биннигом метода сканирующей туннельной микроскопии, которая положила начало развитию сканирующей зондовой микроскопии. Работая над микроскопическими исследованиями роста и электрических свойств тонких диэлектрических слоев в лаборатории IBM в Рюмликоне в Швейцарии, авторы думали использовать туннельную спектроскопию. В то время были известны работы Янга о полевом излучающем микроскопе, Томпсона по туннелированию в вакууме с управляемым остриём, так что мысль о способности измерения с помощью эффекта туннелирования не только спектроскопических свойств поверхности, но и её рельефа, была основана на трудах немалого количества исследователей[2].

И вот когда авторы получили атомное изображение давно волновавшей всех поверхности кремния с периодом 7 на 7, — в 1986 году мир отметил их Нобелевской премией. Множество трудностей, которые усложняли исследование образцов в СТМ, побудили к 1986 году разработать их первый атомно-силовой микроскоп, который мог использовать те самые силы взаимодействия между образцом и остриём, которые так мешали в случае СТМ. Атомно-силовой микроскоп позволял проводить измерения не только в вакууме, но и в атмосфере, заранее заданном газе и даже сквозь плёнку жидкости, что стало несомненным успехом для развития биологической микроскопии. Так было положено начало эры сканирующей зондовой микроскопии. Вскоре была представлена микроскопия ближнего поля, которая задействовала оптические волны для разрешения объектов до 10 ангстремм[2].


4.2 Преимущества и недостатки сканирующей зондовоймикроскопии по отношению к другим методам диагностики поверхности

Перемещаясь в плоскости образца над поверхностью, «кантилевер» изгибается, отслеживая ее рельеф. Однако при сканировании образца в контактном режиме поверхность образца частично повреждается, а разрешение метода оказывается достаточно низким. Разработка методов полуконтактного и бесконтактного сканирования, когда, зонд входит в контакт с поверхностью только в нижней точке траектории собственных резонансных колебаний или не входит в контакт вообще, позволили увеличить разрешение АСМ, значительно снизив давление на образец со стороны зонда. Для регистрации отклонения «кантилевера» предложены различные системы, основанные на использовании емкостных датчиков, интерферометров, систем отклонения светового луча или пьезоэлектрических датчиков. В современных приборах угол изгиба «кантилевера» регистрируется с помощью лазера, луч которого отражается от внешней стороны консоли и падает на фотодиодный секторный датчик (Рис.2). Система обратной связи отслеживает изменение сигнала на фотодетекторе и управляет «системой нанопозицонирования». Использование «пьезодвигателей» и атомно-острых зондов позволяет добиться атомного разрешения АСМ в высоком вакууме (рис. 3).

Рис.3


Помимо непосредственного исследования структуры поверхности методом контактной АСМ, можно регистрировать силы трения и адгезионные силы. В настоящее время разработаны многопроходные методики, при которых регистрируется не только топография, но и электростатическое или магнитное взаимодействие зонда с образцом. С помощью этих методик удается определять магнитную и электронную структуру поверхности, строить распределения поверхностного потенциала и электрической емкости, и т.д. (рис. 3). Для этого используют специальные «кантилеверы» с магнитными или проводящими покрытиями. АСМ также применяются для модификации поверхности. Используя жесткие зонды, можно делать гравировку и проводить «наночеканку» – выдавливать на поверхности крошечные рисунки. Применение жидкостной атомно-силовой микроскопии позволяет локально проводить электрохимические реакции, прикладывая потенциал между зондом и проводящей поверхностью (рис. 2), а также открывает возможность применения АСМ для исследования биологических объектов (рис. 4)[1,2].

Необходимо было решить множество технических проблем: как избежать механических вибраций, приводящих к столкновению острия с поверхностью (мягкая подвеска), какие силы действуют между образцом и остриём (к созданию АСМ), как перемещать остриё с такой высокой точностью (пьезоэлектрик), как приводить образец и остриё в контакт (специальный держатель), как избежать тепловых флуктуаций (использование не нитевидных кристаллов с большими упругими константами, низкие темепературы), форма острия и её получение (на поверхности основного острия существуют миниострия — сначала использовались они, потом с помощью самого процесса туннелирования — сильное вакуумное электрическое поле при напряжении всего лишь несколько вольт вызвало миграцию ионов (испарение)[2].

Принципиальным свойством электронной, оптической, ядерной микроскопий является, то что каждая частица, провзаимодействовавшая с образцом, будь то атом или субатомные объекты, является зондом. Однако, у данного метода есть свои минусы и плюсы. Так квантовый принцип неопределённости, гласящий, что определение одновременно импульса и координаты объекта исследования, возможно только с определённой точностью, заставляет увеличивать импульс регистрирующих частиц (энергию), что связано с созданием специальных технологий. Увеличение импульса регистрирующих частиц (например, электроны в ПЭМ достигают энергий до 1000 КэВ) создаёт проблемы с устойчивостью объекта к разрушению. Однако плюсом является тот факт, что одновременно получается информация сразу с относительно большого участка поверхности, что позволяет использовать данный метод для in-situ исследований. Так же главным недостатком данного вида микроскопии можно назвать условие относительного вакуума, для получения более менее качественного изображения.