Смекни!
smekni.com

Безотходная технология извлечения свинца из колошниковой пыли (стр. 2 из 3)

Схема аппарата для проведения процесса представлена на рис.1. Пыль 2, содержащая свинец, собирается в газоочистном сепараторе 1 и подается в плавильную печь 7 транспортером 3, например шнековым транспортером. В пыль могут быть введены добавки 4, такие как карбонат натрия или бура. Они подаются на транспортер 3 дозирующим устройством 5 в количествах, пропорциональных количеству пыли, подаваемой транспортером 3 в каждый момент времени. В этом случае транспортер выполняет также роль смесителя для пыли и добавок. Образующаяся при этом смесь 6 подается на наклонное рабочее пространство плавильной печи 7, где она нагревается пламенем 9 горелки 18, находящейся напротив рабочего пространства.

Расплавленная масса 10 стекает по поверхности 8 к выходному отверстию 17, через которое также могут быть введены добавки 16, например мелкие гранулы железосодержащего материала, дозируемые устройством 15 таким же образом, как и в случае дозатора 5. Образующийся шлак 13 стекает в сборник, где он нагревается горелкой 12 при постоянном перемешивании мешалкой 14. После заполнения сборника 11 мешалку 14 удаляют и содержимое сборника переливают в другую емкость, либо заменяют его пустым сборником. В любом случае шлак 13 охлаждают и после затвердевания возвращают в металлургическую плaвильную печь.

Глава 3. Комплексная переработка свинецсодержащих техногенных отходов медеплавильных предприятий Урала

Сложившаяся экономическая ситуация вынуждает медеплавильные предприятия отказываться от переработки техногенных отходов (шлаков, пылей, кеков и т.п.). Свинец - и цинксодержащие твердые отходы в значительных количествах скапливаются на территории заводов, в так называемых “временных” отвалах, а зачастую складируются на площадках предприятий. Попытки реализовать свинецсодержащие промпродукты наталкиваются на трудности, связанные с занижением цен со стороны свинцовых предприятий-монополистов, проблемами подготовки и транспортировки промпродуктов, экологическими и другими ограничениями.

Россия осталась без заводов по производству первичного свинца, последний используется в электротехнической, химической, атомной промышленности, при производстве автомобильных аккумуляторов и топливных антидетонаторов. Отставание горнорудной базы свинца и потребность значительных капитальных вложений сдерживают строительство крупного предприятия по добыче и производству первичного свинца [1].

Химический состав пылей уральских медеплавильных предприятий, %

Предприятие, плавильный агрегат Элемент
Zn Pb As Сu Fe
Среднеуральский медеплавильный завод:
обжиговая печь 11,3 2,1 3,3 9.3 19,8
отражательная печь 6,9 1,5 2,2 11,8 27,50,3
конвертер 31,7 25,5 2,2 1,7 0,3
печь Ванюкова:
грубая пыль 4,0 0,8 0,4 10,0 21,0
тонкая пыль 12,0 4,5 1,4 5,5 12,0
Кировградский медеплавильный комбинат:
отражательная печь 2,4 2,9 3,5 9,7 18,3
шахтная печь:
грубая пыль 25,7 3,8 0,1 12,5 9,7
тонкая пыль 43,4 4,8 0,1 0,4 1,2
конвертер:
грубая пыль 15,7 7,4 0,1 31,4 7,8
тонкая пыль 38,5 14,2 0,2 1,8 0,2
Красноуральский медеплавильный комбинат:
обжиговая печь 3,8 1,7 4,3 12,2 21,3
отражательная печь:
грубая пыль 8,9 3,0 - 9,9 22,9
тонкая пыль 21,6 4,1 1,4 3,8 -
Сухоложский завод вторичных цветных металлов:
отражательная печь 48,8 1,3 - 3,3 0,9
индукционная печь 31,2 0,9 - 3,7 0,5

Вместе с тем только на медеплавильных предприятиях Уральского региона скопились значительные запасы свинца в техногенных отходах. С учетом расширения переработки аккумуляторного лома появляется возможность снижения дефицита свинца в России. При выборе технологии создаваемого свинцового производства учитывают экологическую безопасность, экономическую эффективность, минимальные капитальные вложения и возможность организации новых рабочих мест.

Основными техногенными отходами медеплавильных предприятий являются свинецсодержащие пыли плавильных агрегатов и кеки, полученные при сернокислотном выщелачивании цинковых пылей. Достаточно полную схему переработки пылей имел Кировградский медеплавильный комбинат (КМК), где получали из конверторных пылей гранулированный цинковый купорос. На КМК на тонну сульфата цинка получали около 400 кг свинцово-оловянного кека (влажность 20-25%), реализация которого в настоящее время затруднена.

Состав свинецсодержащих пылей уральских медеплавильных предприятий приведен в таблице, он зависит от состава перерабатываемого сырья, конструкции плавильного агрегата, а также от особенностей технологии конкретного предприятия [2].

Пыли с высоким содержанием цинка, как правило, подвергают сернокислотному выщелачиванию, а из очищенного от примесей раствора получают оксид цинка или его соли; в кеках концентрируют свинец и олово. Состав кеков, характерных для практики Среднеуральского медеплавильного завода (СУМЗ) и Кировградского медеплавильного комбината (КМК), приведен ниже:

Сu Zn Pb Sn Fe As СУМЗ 0,2-0,5 8-12 42-46 - 0,4-0,5 1,7-2,1 КМК 1,5-2,0 5-8 40-45 10-15 0,5-1,0 0,4-0,5

Переработка такого сырья на свинец или его сплавы экономически целесообразна, однако единого мнения относительно оптимальной технологии пока нет. В литературе дискутируются вопросы, касающиеся отдельных технологических операций, приводятся частные доводы в защиту тех или иных растворителей, предлагаются варианты совершенствования устаревших технологических приемов.

Одним из важных условий при выборе технологической схемы переработки свинцовых кеков является их фазовый состав. По нашим данным, свинец в них представлен на 50-60% в форме сульфата, на 35-45% - в форме оксида; остальной свинец связан в сложные оксидные соединения (силикаты, арсенаты, антимонаты и пр). Медь представлена на 75-85% оксидными соединениями, 15-20% - сульфидом, 3-4% - сульфатом. Цинк содержится в кеках в основном (на 65-70%) в силикатной форме, в форме сульфата (15-20%) и свободного оксида (5-10%). Практически все олово в свинцовых кеках представлено аморфной модификацией метаоловянной кислоты.

В большинстве рекомендаций в качестве головной операции переработки свинцовых промпродуктов используется плавка на черновой свинец с последующим его пирометаллургическим рафинированием. Эти освоенные операции позволяют получить достаточно чистый металл, обеспечивают высокое извлечение свинца и вывод значительной части примесей (цинка, мышьяка и железа). Вместе с тем экологические ограничения становятся серьезным препятствием для крупномасштабного внедрения пирометаллургических схем. Аппаратурное оформление плавки и рафинирования в котлах громоздко, предусматривает сложную схему пылеулавливания и обезвреживания отходящих газов. Получаемые продукты (шлаки, съемы, вторичные пыли и др.) требуют доработки, что снижает экономическую эффективность производства в целом.

В последние годы в мировой практике наметилась тенденция к применению гидрометаллургических приемов при переработке вторичного неметаллизированного свинцового сырья [3].

Поскольку свинецсодержащие кеки содержат значительные количества водорастворимых соединений, головной операцией их гидрометаллургической переработки является отмывка. Это позволяет снизить содержание меди и цинка в кеке, что снижает расход растворителя.

Перспективными растворителями оксидных и сульфатных форм свинца являются комплексные соединения. Преимущества их - высокая емкость по свинцу, селективность и возможность регенерации. В частности, наиболее изученными являются растворы этилендиамина (Еn). Сульфат и оксид свинца растворяются в них согласно уравнениям:

PbSO4 + 2Еn = Pb (En) 2S04; РbО + Еn + H2SO4 = Pb (En) SO4+ H2O.


Для активного растворения оксида свинца необходимо присутствие в растворе серной кислоты или предварительная сульфатизация кеков. Через 20-30 мин при 293 К и соотношения Ж: Т = 10: 1 в раствор извлекается до 90-95% свинца. Сульфидные соединения, благородные металлы, оксиды железа, висмута, олова и минералы пустой породы остаются в нерастворимом остатке. Низшие оксиды сурьмы и мышьяка частично переходят в раствор.

Для выщелачивания кеков КМК использовали растворы Еn с концентрациями 100-200 г/дм3. За 120 мин в раствор извлекается лишь 48% свинца, что соответствует содержанию его сульфатной формы в исходном кеке. Введение в раствор до 30 г/дм3 серной кислоты положительных результатов не дало. Поэтому для эффективного использования этилендиамина в качестве растворителя необходима предварительная сульфатизация, которая потребует дополнительного кислотостойкого оборудования, увеличит количество вредных стоков и ухудшит условия труда.

Результативным приемом выделения свинца из очищенных растворов этилендиамина является продувка их углекислым газом, завершающаяся осаждением карбоната свинца, который после промывки и сушки пригоден для производства химических соединений, в том числе для получения чистого оксида свинца, используемого при производстве хрусталя [4].

При выщелачивании кеков в растворах двунатриевой соли этилендиаминтетрауксусной кислоты (ЭДТА) растворяются как сульфатная, так и оксидная формы свинца; это позволяет перерабатывать свинецсодержащие техногенные отходы без какой-либо предварительной подготовки. К преимуществам растворения относятся экологическая безопасность и возможность использования аппаратуры из доступных марок конструкционных сталей.