Смекни!
smekni.com

Восстановление деталей машин методами пластической деформации (стр. 3 из 4)

Структура металла с расположенными вдоль его течения вытянутыми, а иногда и разорванными на отдельные цепочки неметаллическими включениями называется волокнистой. При последующей термообработке изменить такую структуру невозможно, а повторная обработка давлением может лишь изменить направление волокон. Следствием такой структуры является анизотропия механических свойств металла вдоль и поперек его волокон. Это учитывают при проектировании, технологической разработке и изготовлении изделий. При обработке резанием нежелательно перерезать волокна, так как это снижает прочность деталей. Из двух коленчатых валов, показанных на рис. 3, более прочным будет вал, изготовленный ковкой без перерезания волокон.

Рис. 3. Расположение волокон в коленчатом вале, изготовленном резанием (а), ковкой (б)

Зависимость механических свойств металла от укова показана на рис. 4. Пластические свойства металла, а также ударная вязкость в продольном направлении возрастают с увеличением укова до 6–10, после чего они остаются приблизительно постоянными. В поперечном направлении эти свойства с увеличением укова уменьшаются, поэтому при необходимости их повысить изменяют направление волокон, например осадкой заготовки.

Рис. 4. Зависимость от величины укова относительного удлинения и ударной вязкости продольных и поперечных образцов из поковки, откованнной из стального слитка массой 100 т


6. Оборудование для некоторых видов пластической деформации

Во многих случаях использование КГШП, предназначенных для горячей объемной штамповки, значительно эффективнее, чем молотов.

Особенностью конструкции КГШП (рис. 5) является то, что все усилия, возникающие при штамповке, воспринимаются массивной станиной, на которой установлен электродвигатель 7, вращающий через шкив 6 и клиноременную передачу маховик 5, закрепленный на приемном валу 8. С этого вала через зубчатые колеса 9 и 12 вращение передается коленчатому валу 10, соединенному шатуном 2 с ползуном 1, который может совершать возвратно-поступательное движение по направляющим 13. Кривошипно-шатунный механизм включается от ножной педали фрикционной пневматической муфтой 11; для остановки выключают пневматическую муфту и включают пневматический ленточный тормоз 3. Маховик останавливают тормозом 4 при выключенном электродвигателе. На станине 15 пресса установлен клиновой стол 14, предназначенный для регулирования высоты штампов при их установке.

Рис. 5. Кинематическая схема кривошипного горячештамповочного пресса


Горизонтально-ковочные машины (ГКМ)

ГКМ широко применяют в крупносерийном и массовом производствах для горячей штамповки из проката самых различных поковок, требующих технологических переходов высадки, прошивки, просечки, пережима заготовки, выдавливания, гибки и отрезки поковки от прутка. Поковки штампуют непосредственно из прутка или отдельных штучных заготовок с незначительными по величине облоем и штамповочными уклонами, а также без них с малыми припусками и допусками, что обеспечивает значительную экономию металла. Штамп для ГКМ имеет две взаимно перпендикулярные плоскости разъема матриц и пуансона, чем обеспечивается получение поковок более сложной формы, чем на молотах, штампы которых имеют одну плоскость разъема.

Схема ГКМ с вертикальным разъемом матриц и с кулачково-рычажным механизмом зажимного ползуна показана на рис. 6. От электродвигателя 1 движение передается клиноременной передачей 2 на маховик 3, от него через фрикционную пневматическую муфту включения 4 – на приводной вал 5 и затем через пару зубчатых колес 6 – на кривошипный вал 8, который через шатун 9 обеспечивает возвратно-поступательное движение главного ползуна 10 с закрепленными на нем пуансонами 11. Упор 12 при сомкнутых матрицах отводится в сторону главным ползуном.

ГКМ с вертикальным разъемом матриц могут работать в автоматическом режиме в комплексе с индукционными нагревателями и клещевым перекладчиком. Обычно при печном нагреве заготовок такие ГКМ оснащают механизированными пневматическими подъемными столами и подвесками, осуществляющими движение заготовки в вертикальном направлении на уровень того или иного ручья штампа. Остальные манипуляции с заготовкой штамповщик выполняет вручную.


Рис. 6. Кинематическая схема горизонтально-ковочной машины

7. Поверхностное пластическое деформирование

Упрочнение деталей поверхностным пластическим деформированием (ППД). Сущность способа заключается в следующем. Под давлением деформирующего инструмента микровыступы (микронеровности) поверхности детали пластически деформируются (сминаются), заполняя микровпадины обрабатываемой поверхности, что способствует повышению твердости поверхностного слоя. Более того, в поверхностном слое возникают благоприятные сжимающие напряжения, что способствует повышению усталостной прочности на 30…70%, износостойкости–в 1,5…2 раза, значительно снижается шероховатость поверхности упрочняемой детали.

К наиболее распространенным способам упрочнения ППД относятся:

– обкатка рабочих поверхностей шариками или роликами;

– алмазное выглаживание;

– дробеструйная обработка;

– ультразвуковое упрочнение;

– упрочнение наклепом.

– Статико-импульсная обработка (СИО)

Обкатку шариками или роликами (для внутренних поверхностей–раскатка) выполняют с помощью специальных шариковых или роликовых накаток (раскаток) на токарно-винторезных станках, при этом упрочняющий инструмент закрепляют на суппорте станка. Это перспективный способ ППД, так как способствует снижению шероховатости поверхности, микротвердость поверхностного слоя увеличивается на 40…60%, возрастает глубина упрочненного слоя металла.

Основные параметры процесса: усилие обкатывания, продольная подача инструмента, число проходов и припуск на обкатывание.

Усилие обкатывания в каждом конкретном случае должно быть оптимальным, так как недостаточное прижатие инструмента к детали приводит к увеличению числа проходов инструмента из-за неполного смятия микронеровностей поверхности. Слишком большое усилие снижает надежность инструмента, приводит к перенаклепу поверхности и отслаиванию упрочненного слоя.

В каждом конкретном случае усилие обкатывания, можно рассчитать с последующим уточнением опытным путем. Продольная подача при работе одним шариком или сферическим роликом – 0,1…0,3 мм/об. При использовании многошарикового или многороликового инструмента подачу увеличивают.

Для повышения долговечности и несущей способности транспортных деталей широко используется методы упрочнения поверхностным пластическим деформированием (ППД).

Упрочнение выполняется с целью повышения сопротивления усталости и твердости поверхностного слоя металла и формирования в поверхностном слое напряжений сжатия, а также регламентированного микрорельефа.

Упрочняющую обработку поверхностным пластическим деформированием применяют на финишных операциях технологического процесса, вместо или после термообработки, и часто вместо абразивной или отделочной обработки.

Поверхностное пластическое деформирование, выполняемое без использования внешнего тепла и обеспечивающее создание поверхностного слоя с заданным комплексом свойств называют наклепом. В результате наклепа повышаются все характеристики сопротивления металла деформации, понижается пластичность и увеличивается твердость.

Упрочнение металла в незакаленной стали происходит за счет структурных изменений и изменений структурных несовершенств (плотности, качества и взаимодействия дислокаций, количества вакансий и др.), дроблением блоков и наведением микронапряжений. При упрочнении закаленных сталей, кроме этого, происходит частичное превращение остаточного аустенита в мартенсит и выделение дисперсных карбидных частиц.

Поверхностная деформация приводит к образованию сдвигов в зернах, упругому искажению кристаллической решетки, изменению формы и размеров зерен. Интенсивность наклепа (упрочнения) тем выше, чем мягче сталь. На незакаленных сталях увеличение твердости составляет более 100%, на закаленных 10–20%, при глубине упрочненного слоя до 12 и более мм.

Статико-импульсная обработка (СИО) является значительно усовершенствованным процессом ударной чеканки – упорядоченного ударного воздействия на упрочняемую поверхность. Выполняется специальными бойками с помощью механизированного инструмента.

Обработка СИО является новым видом обработки поверхностным пластическим деформированием, отличающимся способом подвода энергии в зону деформации. Пластическая деформация металла осуществляется управляемым импульсным воздействием, сообщаемым ударной системой боек-волновод статически нагруженному инструменту. Использование предударного статического поджатия инструмента к обрабатываемой поверхности позволяет увеличить ее площадь контакта с инструментом, способствуя уменьшению искажений передаваемого ударного импульса и уменьшая потери энергии удара.

Технология упрочнения СИО включает следующие этапы: предварительное статическое и последующее периодическое импульсное нагружение инструмента. СИО осуществляется при помощи специально разработанного высокочастотного генератора механических импульсов (ГМИ), позволяющего регулировать энергию и частоту импульсов в широком диапазоне. Для повышения долговечности и несущей способности транспортных деталей широко используется методы упрочнения поверхностным пластическим деформированием (ППД).