Смекни!
smekni.com

Выбор способа сварки диафрагменной лопатки паровой турбины (стр. 2 из 8)

Обеспечить стойкость металла шва и, в особенности, околошовной зоны к образованию трещин – основная проблема свариваемости сталей мартенситного и мартенситно – ферритного классов. В этом случае для металла шва и околошовной зоны характерно наличие укрупненных зерен низкоуглеродистого высокохромистого феррита (микротвердость 152–164 кГ/мм2) и легированного мартенсита (микротвердость 429–458 кГ/мм2).

Легированный мартенсит более пластичен, чем углеродистый, и называется игольчатым мартенситом. Но присутствие в структуре металла последнего все же увеличивает общую твердость и хрупкость шва, а также околошовной зоны, заметно снижая ударную вязкость. Поэтому здесь возможно появление холодных трещин.

Чтобы уменьшить возможность появления холодных трещин при сварке закаливающихся сталей, стремятся предупредить образование хрупкой закаленной зоны вблизи шва. Для этого выбирают режимы сварки с большой погонной энергией, при которой скорость охлаждения шва и околошовной зоны уменьшается. В тех же целях применяют подогрев изделия (до температуры 250˚С и выше в зависимости от содержания углерода и хрома в стали), замедленное охлаждение изделия после сварки и д. р.

После сварки обязательна термообработка изделия – высокий отпуск 650˚ – 700˚С. В результате отпуска несколько уменьшается прочность металла, а его твердость и ударная вязкость достигает исходных величин.

Сталь 08Х13 используется для деталей и инструментов, подвергающихся воздействию слабоагрессивных сред: воды, атмосферы, разбавленных растворов кислот и солей т.д., работающих при температурах до 4000С.

Данная сталь обладает ферритной структурой, а следовательно, не имеет превращения g«a и не упрочняется термической обработкой. Главный недостаток этой стали – резкое охрупчивание после нагрева выше 1000–11000С. Это объясняется наличием большого количества свободного d-феррита, содержание которого зависит от количества С и Сr. Это затрудняет сварку ферритных сталей, так как для частичного уменьшения хрупкости сварные соединения должны подвергаться отжигу при 750–8000С, а перед ней – предварительному подогреву до 150 – 2500С. По завершении отжига требуется ускоренное охлаждение, чтобы не допустить охрупчивание. Сталь данной структуры после высокотемпературного нагрева подвержена МКК.

Сталь 20Х13 используется для деталей и инструментов, подвергающихся воздействию слабоагрессивных сред: воды, атмосферы, разбавленных растворов кислот и солей т.д., работающих при температурах до 4500С. Структура отожженных сталей представляет собой легированный феррит с частицами карбида хрома. Отожженные стали имеют удовлетворительную стойкость против коррозии, но их прочность невысока – 500Мпа. Прочность увеличивается после закалки и отпуска. Закалку проводят с 1050–11000С для растворения карбида хрома. Изделия после закалки подвергают либо низкому (200–4000С), либо высокому (600–7000С) отпуску. Максимальное сопротивление коррозии стали имеют после низкого отпуска, пониженное, но тем не менее достаточно высокое – после высокого отпуска. Шлифование и полирование поверхности дополнительно повышает стойкость изделий. Отпуск при 400–6000С резко снижает сопротивление коррозии и поэтому не применяется.

Мартенситные стали после отжига удовлетворительно обрабатываются резанием, горячая обработка и сварка этих сталей затруднены из-за образования мартенсита. Мартенсит увеличивает склонность этой стали к образованию холодных трещин при сварке. Это объясняется высокой степенью тетрагональности кристаллической решетки мартенсита. При снижении содержания мартенсита вязкость увеличивается, однако, при этом образуется свободный d-феррит, который придает сталям повышенную хрупкость. При сварке мартенситных сталей холодные трещины могут наблюдаться в процессе непрерывного охлаждения при температуре ниже Мн, а также в процессе выдержки при нормальной температуре.

Сталь 12Х13, как видно из табличных данных, занимает промежуточное положение по свойствам между 08Х13 и 20Х13, т. к. обладает промежуточной ферритно-мартенситной структурой (содержание феррита не менее 10%).

2. Свариваемость стали 12Х13

Из-за своего промежуточного положения, сталь 12Х13 обладает лучшей свариваемость среди всех трех сталей. Это объясняется умеренным содержанием d-феррита. Количество d-феррита увеличивается с увеличением в стали % Сr и уменьшением % С. Формирование значительного количества d-феррита в структуре ОШЗ резко уменьшает склонность сварного соединения к образованию холодных трещин, но увеличивает хрупкость. Количество d-феррита зависит от уровня температуры нагрева. В участках ОШЗ, нагреваемых до температур близких к Тсолидуса, количество d-феррита может быть подавляющим. Такая структура характерна для участка ЗТВ примыкающего к линии сплавления. Ширина этого участка мало зависит от температуры подогрева, но возрастает с увеличением qп – погонной энергии, которая зависит от выбранных режимов и способа сварки.

Так как во всех сталях содержание Сr остается постоянным, то объем d-феррита зависит от % С. Пониженное содержание С в стали 08Х13 способствует резкому увеличению содержания d-феррита, а следовательно и высокому охрупчиванию. А высокое содержание % С в стали 20Х13 способствует увеличению склонности к холодным трещинам, но с низким охрупчиванием. В стали же 12Х13 эти два негативных момента находятся на удовлетворительном уровне. К этому можно добавить, что меньшее содержание С, по сравнению со талью 20Х13, сопровождается увеличением количества феррита и образованием более пластичного мартенсита, а по сравнению со сталью 08Х13, не требуется предварительный нагрев. Для уменьшения количества закалочных структур и увеличения выделения карбидов после сварки рекомендуется проводить высокий отпуск при Т=650–7000С.

Особенности термической обработки сварных соединений из сталей феррито-мартенситного класса

Термическая обработка сварных соединений из высокохромистых сталей производится с целью:

1) снятие остаточных сварочных напряжений при необходимости сохранения точных размеров изделий;

2) обеспечения стойкости против межкристаллической коррозии при эксплуатации в агрессивных средах;

3) повышение жаропрочности и стойкости против локальных разрушений при эксплуатации в условиях высоких температур.

4) обеспечение уменьшения количества закалочных структур и увеличения выделения карбидов.

Учитывая высокую склонность к закалке нержавеющих феррито-мартенситных сталей, содержащих углерода 0,1% и более, после сварке необходим высокий отпуск в интервале температур от 650 до 7000С ºС.

3. Выбор способа сварки и его основные параметры

Параметры выбора способа сварки

При выборе способа сварки для изготовления сварной конструкции на предприятии необходимо руководствоваться следующими условиями:

– экономическая целесообразность,

– технологичность,

– наличие необходимого оборудования,

– наличие квалифицированных кадров,

– экологичность и безопасность.

Под технологичностью способа понимается возможность создавать сварное соединение, удовлетворяющего требованиям к нему, на современном оборудовании, удобном в эксплуатации и обслуживании и наиболее эффективном в экономическом отношении. Технологичность способа понятие относительное и зависит от производственных условий.

Исходя из условий, существующих на предприятии, где изготавливается диафрагменная лопатка, наиболее приемлемым является способ электронно-лучевой сварки.

Общая характеристика электронно-лучевой сварки (ЭЛС)

Электронно-лучевое воздействие на металлы, приводящее к их нагреву, плавлению и испарению, как технологическое направление в области их обработки интенсивно применяется в последнее время. Сущность процесса электронно-лучевого воздействия состоит в том, что кинетическая энергия сформированного в вакууме тем или иным способом электронного пучка (импульсного или непрерывного) превращается в тепловую в зоне обработки. Так как диапазоны мощности и концентрации энергии в луче велики, то практически возможно получение всех видов термического воздействия на материалы: нагрев до заданных температур, плавления и испарения с очень высокими скоростями.

Электронно-лучевая технология развивается в основном в трех направлениях: плавки и испарения в вакууме, сварки и прецизионной обработки.

Для сварки металлов создано оборудование трех классов: низко-, средне-, и высоковольтное, охватывающее диапазон ускоряющих напряжений 20–150 кВ. мощность установок составляет 1–120 кВт и более при максимальной концентрации энергии 105-106Вт/см2. Электронно-лучевые установки мощностью до 30 кВт позволяют решить большинство сварочных проблем.

Электронно – лучевое воздействие в диапазоне плотностей энергии 105-106Вт/см2 характеризуется феноменом «кинжального», или глубокого проплавления с соотношением глубины шва к его ширине 10:1 и более. При этом электронный луч фокусируется на площади диаметром менее 0,001 см, что позволяет получить большую удельную мощность. При использовании обычных сварочных источников теплоты (дуги, газового пламени) металл нагревают и плавят за счет распространения теплоты от поверхности в глубину, при этом форма зоны расплавления в сечении приближается к полукругу F2. при сварке электронным лучом теплота выделяется непосредственно в самом металле F1, причем наиболее интенсивно на некоторой глубине под его поверхностью. (рис. 1).


1,5 мм