Смекни!
smekni.com

Зменшення радіальної нерівномірності температурних полів у дисках роторів ГТД дискобарабанної конструкції (стр. 2 из 5)

Публікації. За темою дисертації опубліковано 10 друкованих праць, у тому числі 7 статей у спеціалізованих виданнях ВАК України (1 — без співавторів), і 3 тези доповідей на республіканських і міжнародних науково-технічних конференціях. Отримано три патенти України на винаходи.

Обсяг і структура роботи. Дисертація складається зі вступу, п’ятирозділів, загальних висновків, списку використаних джерел та додатка. Основний матеріал викладений на 129 сторінках, повний обсяг дисертації — 160 сторінок, в тому числі 76 рисунків (6 сторінок), 6 таблиць, 122 найменування списку використаних джерел на 13 сторінках, додаток на 12 сторінках.


ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обгрунтовано актуальність роботи, сформульовано мету і задачі досліджень, наукова новизна і практичне значення отриманих результатів. Приводиться рівень апробації роботи, особистий внесок здобувача і кількість публікацій за темою дисертаційної роботи.

У першому розділі розглянуті системи охолодження роторів дискобарабанних конструкцій, виконаний огляд теоретичних і експериментальних робіт з теплообміну і гідродинаміки плинів у порожнинах роторів ГТД. Показано, що найбільш повно досліджено теплообмін і гідродинаміка плинів у замкнутих порожнинах, порожнинах з радіальною, пітльовою, напівпітльовою і осьовою схемами плину охолоджувача, які найчастіше зустрічаються в конструкції ротора. Описано структури плинів в обертаючихся міждискових порожнинах ротора. Установлено, що в порожнині з осьовим плином охолоджувача в поверхні гарячого диска утворюється шар охолоджувача, що відбирає тепло від диска і, не змішуючись з охолоджувачем, що заповнює порожнину, стікає до центра обертання, роблячи істотний вплив на розподіл температури по радіусу диска. Приведено аналіз сучасних способів повітряного охолодження дисків роторів. Розглянуто принципові схеми з радіальним і струминним обдувом, продувкою повітря через зазори між диском і обертовим дефлектором, з екрануванням маточинної частини диска. На основі аналізу зроблений висновок, що існуючі схеми охолодження не позбавлені недоліків, тому що зберігається нерівномірність температур по радіусу диска, що є причиною виникнення високих термічних напружень, які негативно впливають на міцнісні характеристики дисків. Виходячи з виконаного аналізу, визначені мета і задачі досліджень.

У другому розділі описаний вибір напрямку дослідження, представлене обґрунтування обраної методики і техніки вимірів, описані конструкція і параметри експериментальної установки (рис.1), методика і техніка вимірів. Робоча ділянка експериментальної установки (рис. 2) являє собою модель п'ятиступеневого ротора осьового компресора з транспортуванням повітря, що відбирається на охолодження турбіни, через внутрішні порожнини ротора. У роторі робочої ділянки установлювалися випробовувані конструкції пристроїв длязменшеннярадіальної нерівномірності температур. Тепловий потік створювався електронагрівачем з нержавіючої сталевої стрічки, покладеним по утворюючій барабана робочої ділянки.

Рис.2. Робоча ділянка експериментальної установки:

1 – напіввал лівий; 2 – барабан; 3 – диск; 4 – проставочне| кільце; 5 – внутрішній електронагрівач; 6 – зовнішній електронагрівач; 7 – захисний кожух; 8 – центральний вал; 9 – мідно-графітові щітки; 10 – напіввал правий; 11 – повітряпідводжуюче ущільнення.

У якості термодатчиків застосовувалися термопари типу хромель-алюмель зі стеклотканевою ізоляцією. Вільні термоелектроди термопар виводилися з вала ротора робочої ділянки і підключалися до ртутного струмознімача. Реєстрація температури здійснювалася через многоканальний аналогово-цифровий перетворювач.

Складено план експерименту, описана методика обробки результатів вимірів, виконана оцінка помилок вимірів. Показано, що використовувані засоби вимірів дозволяють досягти необхідної точності визначення шуканих величин.

У третьому розділі представлені виконані на експериментальній установці дослідження температурного стану дисків із пристроями двох типів, що використовують динамічний напір осьового потоку повітря, що відбирається на охолодження двигуна, для зменшення радіальної нерівномірності температурних полів дисків. Дослідження виконувалися при різних щільністях теплового потоку, витратах охолоджувача і кутової швидкості обертання ротора робочої ділянки і центрального вала.

Як показали результати експериментів, пристрої, що змінюють напрямок плину осьового потоку (рис. 3), є малоефективними, тому що динамічного напору повітря недостатньо, щоб повітря, що направляється повітророзподільниками в порожнину, вплинуло на зменшення нерівномірності розподілу температури по радіусу диска.

а

б

в

г

Установлено, що найбільш ефективно знижують перепад температур по радіусу диска пристрої, принцип дії яких заснований на ежекції з міждискової порожнини ротора гарячого шару, що формується на поверхні проставочних кілець і диска. Ежекторний пристрій утворює з центральним валом канал, що звужується (сопло), у якому швидкість осьового потоку охолоджуючого повітря зростає. Активний потік, що виходить із сопла, захоплюючи за собою частки навколишнього пасивного повітря, створює розрідження, за допомогою якого здійснюється ежектування розігрітого повітря з порожнини ротора. Схеми ежекторних пристроїв показані на рис. 4, 5.

а

в

а

б

в

Температурний стан дисків з дослідженими варіантами конструкцій показаний на рис. 6. Як видно з графіка, найменший перепад температури по радіусу диска має повністю екранований диск з ежекторними каналами, розташованими в кільцевому зазорі під маточиною диска.


Установлено, що збільшення ступеня екранування дозволяє збільшити розігрів маточинної частини диска за рахунок більшого відводу тепла з периферії міждискової порожнини від проставочних кілець; при збільшенні швидкості осьового потоку охолоджуючого повітря збільшується відструмлення гарячого повітря за допомогою ежектування, що приводить до більшого розігріву маточини диска.

Результати експериментального дослідження впливу витрати осьового потоку охолоджуючого повітря на відносний перепад по радіусу диска показані на рис. 7.Як видно з графіка, відносний перепад температур по радіусу цілком екранованого диска змінюється пропорційно зміні витрати охолоджуючого повітря. Тут t*мах , t мах – температура полотнини на максимальному радіусі диска при відсутності і наявності ежекторних пристроїв у порожнині ротора, °С; t*min , t min – температура на мінімальному радіусі маточини диска при відсутності і наявності ежекторних пристроїв у порожнині ротора, °С.


Рис. 7. Відносний перепад температур по радіусу диска:

1-3 — повнеекранування диска; 4-6 — при наявності в екрані отворів; 7-9 —ежекторні пристрої з довгими трубками; 10-12 — ежекторні пристрої з трубками середньої довжини; 13-15 – екранування маточини і 2/3 полотна диска; 16 — без пристроїв у порожнині ротора; 1, 4, 7, 10, 13 — витрату охолоджуючого повітря прийнято за 100%; 2, 5, 8, 11, 14 — витрату охолоджуючого повітря зменшено на 15%; 3, 6, 9, 12, 15 — витрату охолоджуючого повітря зменшено на 30%.

З метою перевірки працездатності ежекторних каналів в умовах роботи реального ГТД, були виконані візуальні дослідження. Робоча ділянка експериментальної установки являє собою прозорий канал квадратного перетину, що містить дві міждискові порожнини з осьовим плином охолоджувача (рис. 8). Як охолоджувач використовувалася дистильована вода, що дозволило одержати окружні й осьові числа Рейнольдса того ж порядку, що й у реальних двигунах. Робота ежекторного пристрою визначалася візуально по надходженню з каналу струменеві води, підфарбованій тушшю (рис. 9). Фотозйомка обертового ротора робочої ділянки велася при стробоскопичном висвітленні робочої ділянки імпульсними лампами.