регистрация /  вход

Материаловедение (стр. 1 из 3)

Задача №1.

При испытании на растяжение стального цилиндрического образца диаметром __=10мм и начальной расчетной длиной l0 =100мм, наибольшая нагрузка, предшествующая разрушению образца, равнялась Р=50000Г

Определите:

- предел прочности при растяжении __,МН/м2 (кгс/мм2 );

- относительное удлинение __ %, длина образца после разрыва l1 =120мм;

- относительное сужение __,%, если площадь в месте разрыва ___=70мм2

[1МН/м2 = 0.1кгс/мм2 ]

Решение:

___=РB /(l0 *__)=50000Н/(10мм*100мм)=50МН/м2 = 5кгс/мм2

___=((l1 -l0 )/l0 )*100%=(120мм-100мм)/100мм*100%=20%

___=((___/___)/___)*100%=((1000мм2-70мм2)/1000мм2)*100%=93%

Ответ: Предел прочности при растяжении 5кгс/мм2 или 50МН/м2

Относительное удлинение 20%

Относительное сужение 93%

Задача №2. Применение металлических твердых сплавов групп ВК и ТК, их состав и свойства

Вольфрамокобальтовые сплавы (ВК)

Вольфрамокобальтовые сплавы (группа ВК) состоят из карбида вольфрама(WC) и кобальта. Сплавы этой группы различаются содержанием в них кобальта, размерами зерен карбида вольфрама и технологией изготовления. Для оснащения режущего инструмента применяют сплавы с содержанием кобальта 3-10%.

В табл. 2 приведены состав и характеристики основных физико-механических свойств твердых сплавов, в соответствии с ГОСТ 3882-74.

Табл. 2

Состав и характеристики основных физико-механических свойств сплавов, на основе WC-Co (группа ВК)

Сплав Состав, % изг , Мпа, не менее  × 10-3 , кг/м3 HRA, не менее
WC TaC Co
ВК3 97 - 3 1176 15,0-15,3 89,5
ВК3-М 97 - 3 1176 15,0-15,3 91,0
ВК4 96 - 4 1519 14,9-15,2 89,5
ВК6 94 - 6 1519 14,6-15,0 88,5
ВК6-М 94 - 6 1421 14,8-15,1 90,0
ВК6-ОМ 92 2 6 1274 14,7-15,0 90,5
ВК8 92 - 8 1666 14,4-14,8 87,5
ВК10 90 - 10 1764 14,2-14,6 87,0
ВК10-М 90 - 10 1617 14,3-14,6 88,0
ВК10-ОМ 88 2 10 1470 14,3-14,6 88,5

В условном обозначении сплава цифра показывает процентное содержание кобальтовой связки. Например обозначение ВК6 показывает, что в нем 6% кобальта и 94% карбидов вольфрама.

При увеличении в сплавах содержания кобальта в диапазоне от 3 до 10% предел прочности, ударная вязкость и пластическая деформация возрастают, в то время как твердость и модуль упругости уменьшаются. С ростом содержания кобальта повышаются теплопроводность сплавов и их коэффициент термического расширения.

Из всех существующих твердых сплавов, сплавы группы ВК при одинаковом содержании кобальта обладают более высокими ударной вязкостью и пределом прочности при изгибе, а также лучшей тепло- и электропроводностью. Однако стойкость этих сплавов к окислению и коррозии значительно ниже, кроме того, они обладают большой склонностью к схватыванию со стружкой при обработке резанием. При одинаковом содержании кобальта физико-механические и режущие свойства сплавов в значительной мере определяются средним размером зерен карбида вольфрама (WC). Разработанные технологические приемы позволяют получать твердые сплавы, в которых средний размер зерен карбидной составляющей может изменяться от долей микрометра до 10-15 мкм.

Сплавы с размерами карбидов от 3 до 5 мкм относятся к крупнозернистым и обозначаются буквой В (ВК6-В), с размерами карбидов от 0,5 до 1,5 мкм буквой М (мелкозернистым ВК6-М), а с размерами, когда 70% зерен менее 1,0 мкм – ОМ (особо мелкозернистым ВК6-ОМ). Сплавы с меньшим размером карбидной фазы более износостойкие и теплостойкие, а также позволяют затачивать более острую режущую кромку (допускают получение радиуса округления режущей кромки до 1,0-2,0 мкм).

Физико-механические свойства сплавов определяют их режущую способность в различных условиях эксплуатации.

С ростом содержания кобальта в сплаве его стойкость при резании снижается, а эксплуатационная прочность растет.

Эти закономерности и положены в основу практических рекомендаций по рациональному применению конкретных марок сплавов. Так, сплав ВК3 с минимальным содержанием кобальта, как наиболее износостойкий, но наименее прочный рекомендуется для чистовой обработки с максимально допустимой скоростью резания, но с малыми подачей и глубиной резания, а сплавы ВК8, ВК10М и ВК10-ОМ – для черновой обработки с пониженной скоростью резания и увеличенным сечением среза в условиях ударных нагрузок.

Титановольфрамокобальтовые сплавы (ТК).

Сплавы второй группы ТК состоят из трех основных фаз:твердого раствора карбидов титана и вольфрама (TiC-WC) карбида вольфрама (WC) и кобальтовой связки. Предназначены они главным образом для оснащения инструментов при обработке резанием сталей, дающих сливную стружку. По сравнению со сплавами группы ВК они обладают большей стойкостью к окислению, твердостью и жаропрочностью и в то же время меньшими теплопроводностью и электропроводностью, а также модулем упругости.

Способность сплавов группы ТК сопротивляться изнашиванию под воздействием скользящей стружки объясняется также и тем, что температура схватывания со сталью у сплавов этого типа выше, чем у сплавов на основе WC-Co, что позволяет применять более высокие скорости резания при обработке стали и существенно повышать стойкость инструмента.

В табл. 3 приведены состав и характеристики основных физико-механических свойств сплавов в соответствии с ГОСТ 3882-74.

Табл. 3

Состав и характеристики физико-механических свойств сплавов на основе WC-TiC-Co, группа ТК

Сплав Состав, % изг , Мпа, не менее  × 10-3 , кг/м3 HRA, не менее
WC TiC Co
Т30К4 66 30 - 4 980 9,5-9,8 92,0
Т15К6 79 15 - 6 1176 11,1-11,6 90,0
Т14К8 78 14 - 8 1274 11,2-11,6 89,5
Т5К10 85 6 - 9 1470 12,4-13,1 88,5
Т5К12 83 5 -12 1666 13,1-13,5 87,0

Так же как у сплавов на основе WC-Co, предел прочности при изгибе и сжатии и ударная вязкость увеличиваются с ростом содержания кобальта.

Теплопроводность сплавов группы ТК существенно ниже, а коэффициент линейного термического расширения выше, чем у сплавов группы ВК. Соответственно меняются и режущие свойства сплавов: при увеличении содержания кобальта снижается износостойкость сплавов при резании, а при увеличении содержания карбида титана снижается эксплуатационная прочность.

Поэтому такие сплавы, как Т30К4 и Т15К6, применяют для чистовой и получистовой обработки стали с высокой скоростью резания и малыми нагрузками на инструмент. В то же время сплавы Т5К10 и Т5К12 с наибольшим содержанием кобальта предназначены для работы в тяжелых условиях ударных нагрузок с пониженной скоростью резания.

Путем введения легирующих добавок получены сплавы, применяемые для резания стали с большими ударными нагрузками.

Задача №3

На полученное с нефтебазы масло марки М-8Г2(к) был выдан паспорт:

Показатели качества Значения показателей
1. Моющие свойства, баллы 0,8
2. Температура застывания О С -25
3. Температура вспышки О С 200
4. Индекс вязкости 90
5. Кинематическая вязкость при 100О С, мм2 9,0

Поясните влияние отклонений каждого показателя качества масла от требований ГОСТ 8581-78 на работу двигателя и долговечность его систем и механизмов.

Расшифруйте обозначения масла в соответствии с ГОСТом 17479.1.85 “Масла моторные”.

1. Моющие свойства. По ГОСТ 8581-78 показатель является 0,5. Соответственно полученное масло на 0.3 качественнее требований. Следовательно продукт с нефтебазы продлит срок работы двигателя и обеспечит долговечность его систем и механизмов.

2. Температура застывания.

Температура застывания масла указывает только на возможность перелить масло из канистры в картер двигателя, не прибегая к предварительному подогреву. Однозначной взаимосвязи температуры застывания масла с его пусковыми свойствами на холоде не существует.

По ГОСТ 8581-78 показатель является -30. Соответственно полученное масло на 5О С по данному показателю отличается. Следовательно продукт с нефтебазы хуже переносит холодный период и усложнит процесс переливания при температурах ниже -25О С, потребуется значительное время на прогрев.

3. Температура вспышки.

Температура вспышки. Если масло нагревать, то его пары образуют с воздухом смесь. Температуру, при которой эти пары способны воспламениться, называют температурой вспышки. Температура вспышки связана с фракционным составом масла и структурой молекул базовых компонентов. При прочих равных условиях высокая температура вспышки предпочтительна. Она существенно снижается по сравнению с исходным значением, если в процессе работы масло разжижается топливом из-за неисправностей двигателя. В сочетании со снижением вязкости масла понижение температуры вспышки служит сигналом для поиска неисправностей системы подачи топлива, системы зажигания или карбюратора.

По ГОСТ 8581-78 показатель должен быть не менее 90. Соответственно отклонений в работе двигателя быть не должно, так как показатели равны.

4. Индекс вязкости.

Индекс вязкости (VI viscosity index) это эмпирический, безразмерный показатель для оценки зависимости вязкости масла от температуры. Высокий индекс вязкости указывает на сравнительно незначительное изменение вязкости с изменением температуры. Величина вязкости моторного масла должна обеспечить жидкостную смазку главных узлов трения двигателя на всех температурных режимах его эксплуатации.

Похожие статьи

Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!