Смекни!
smekni.com

Перспективные методы сварки (стр. 1 из 3)

Содержание

Введение

Сварка взрывом

Сварка трением

Ручная дуговая сварка

Лазерная сварка

Техника безопасности

Заключение

Список использованной литературы


Введение

Прогресс никогда не стоит на месте. Реалии конкурентной борьбы постоянно ставят перед промышленностью все новые и новые задачи, выдвигают все новые и новые требования. То, что вчера называлось передовым, сегодня стало современным, а завтра уже устареет. Это относится и к сварочному оборудованию, поэтому сварщикам нужно следить за его развитием, осваивать передовые технологии. Это обуславливает актуальность анализа перспективных методов сварки, что и является целью данной работы.

Перспективность метода – это наличие в нем потенциала для дальнейшего развития, после которого этот метод станет лучшим среди других по ряду критериев. В данной работе в качестве критериев были выбраны:

1) Качество сварного шва

2) Экономичность

3) Безопасность работы

4) Сфера применения и условия эксплуатации

5) Возможность автоматизации

6) Набор материалов, которые можно сваривать


Сварка взрывом

Сварка взрывом относится к разновидности сварки давлением и является одним из перспективных способов получения композиционных материалов различного назначения. Неподвижную пластину и метаемую пластину располагают на заданном расстоянии. На метаемую пластину укладывают заряд взрывчатого вещества с детонатором. Сварка производится на опоре (металлическая плита, бетон, песок и т.д.). При инициировании по заряду взрывчатого вещества распространяется фронт детонации. Под действием высокого давления расширяющихся продуктов взрыва метаемая пластина приобретает скорость порядка нескольких сотен метров в секунду и соударяется с неподвижной пластиной, в результате чего образуется сварное соединение.

Разработаны технологии сварки взрывом изделий плоской и цилиндрической геометрии, а также сварки целых конструкций.

Высокопроизводительный и экономичный процесс сварки взрывом позволяет получать соединения практически любых разнородных металлов и сплавов с прочностью на уровне прочности основных металлов. Так, получение крупногабаритных заготовок биметаллов титан-сталь, алюминий сталь, цирконий-сталь, и многих других возможно только с помощью сварки взрывом.

Сварка взрывом – уникальный метод, позволяющий получить зону сплошного соединения по поверхностям двух и более металлов или сплавов площадью до десятков квадратных метров. При этом наносимый слой может иметь толщину от 0,1 мм до 30 мм, а толщина металла- основы не ограничена.

Методом сварки взрывом можно получать разнообразные биметаллические, многослойные и композиционные материалы с улучшенными прочностными, коррозионно-стойкими, жаропрочными и другими свойствами для нужд химического машиностроения, нефтегазовой, алюминиевой, электротехнической и других отраслей промышленности. Номенклатура материалов, сваренных взрывом, достаточно велика и постоянно расширяется. Из вышеприведенного следует, что сварка взрывом прочно занимает свою нишу, но для других, наиболее распространенных и востребованных областей не перспективна.

Сварка трением

Сварка трением это разновидность сварки давлением, при которой нагрев осуществляется трением, вызванным перемещением (вращением) одной из соединяемых частей свариваемого изделия.

Процесс образования сварного соединения:

Вследствие действия сил трения сдираются оксидные плёнки;

Наступает разогрев кромок свариваемого металла до пластичного состояния, возникает временный контакт, происходит его разрушение и высокопластичный металл (металл шва) выдавливается из стыка;

Прекращение вращения с образованием сварного соединения.

Сварка трением является разновидностью сварки давлением, при которой механическая энергия, подводимая к одной из свариваемых деталей, преобразуется в тепловую; при этом генерирование теплоты происходит непосредственно в месте будущего соединения.

Теплота может выделяться при вращении одной детали относительно другой или вставки между деталями, при возвратно-поступательном движении деталей в плоскости стыка с относительно малыми амплитудами Д и при звуковой частоте Детали при этом прижимаются постоянным или возрастающим во времени давлением Р. Сварка завершается осадкой и быстрым прекращением вращения.

В зоне стыка при сварке протекают следующие процессы. По мере увеличения частоты вращения свариваемых заготовок при наличии сжимающего давления происходит притирка контактных поверхностей и разрушение жировых пленок, присутствующих на них в исходном состоянии. Граничное трение уступает место сухому. В контакт вступают отдельные микровыступы, происходит их деформация и образование ювенильных участков с ненасыщенными связями поверхностных атомов, между которыми мгновенно формируются металлические связи и немедленно разрушаются вследствие относительного движения поверхностей.

Этот процесс происходит непрерывно и сопровождается увеличением фактической площади контакта и быстрым повышением температуры в стыке.

При этом снижается сопротивление металла деформации, и трение распространяется на всю поверхность контакта. В зоне стыка появляется тонкий слой пластифицированного металла, выполняющего роль смазочного материала, и трение из сухого становится граничным.

Под действием сжимающего усилия происходит вытеснение металла из стыка и сближение свариваемых поверхностей (осадка). Контактные поверхности оказываются подготовленными к образованию сварного соединения: металл в зоне стыка обладает низким сопротивлением высокотемпературной деформации, оксидные пленки утонены, частично разрушены и удалены в грат, соединяемые поверхности активированы. После торможения, когда частота вращения приближается к нулю, наблюдается некоторое понижение температуры металла в стыке за счет теплоотвода. Осадка сопровождается образованием металлических связей по всей поверхности.

Сваривать стержни диаметром более 200 мм нецелесообразно, потому что для реализации этого процесса потребовались бы машины с двигателями мощностью ~ 500 кВт при скорости вращения ~2 с-1 и с осевым усилием более 3 * 10б Н. Сооружение такой машины и ее эксплуатация были бы настолько дорогими, что не окупили бы выгоды, которую может дать сварка трением.

Не удается сварить даже в лабораторных условиях и стержни диаметром менее 3,5 мм, для которых нужна установка со скоростью вращения шпинделя ~ 200 с-1 и сложным устройством для осуществления мгновенного его торможения.

Расчеты и опыт практического применения сварки трением показывают, что ее пока целесообразно применять для сварки деталей диаметром от 6 до 100 мм. Наиболее эффективно применение сварки трением для изготовления режущего инструмента при производстве составных сварно-кованых, сварно-литых или сварно-штампованных деталей. Она оказывается незаменимой при соединении трудно свариваемых или вовсе не сваривающихся другими способами разнородных материалов, например стали с алюминием, аустенитных сталей с перлитными. Эффективно применение сварки трением и для соединения пластмассовых заготовок.

Исходя из вышеприведенного, видно, что сварка трением, так же прочно занимает свою нишу. Она более перспективна, чем сварка взрывом. Сварка деталей таким способом не требует расходных материалов.

При сварке трением получаются высококачественные соединения. Но есть у этого метода и несколько существенных минусов, не позволяющих считать его перспективным. Во-первых – можно сваривать лишь трубы и цилиндрические изделия. Во-вторых, автоматизация этого процесса затруднена, поскольку для сварки совершаются манипуляции с самой деталью, причем манипуляции, требующие четкой и жесткой фиксации обоих деталей. А поскольку даже при конвейерном, не говоря уже о штучном, никогда не бывает одинаковых деталей, сварной автомат придется оборудовать сложной системой датчиков и подвижными манипуляторами. Вся эта система требует написания сложной программы и компьютерного управления, если нужно получить автомат способный обрабатывать разные детали. Это очень дорого, довольно громоздко и обеспечивает невысокую производительность производственной линии. Конечно, она производительней ручного труда, но все же не перспективна. Неперспективность этого вида сварки еще больше усиливают сильные ограничение на габариты и форму свариваемых деталей.

Ручная дуговая сварка

Наибольший объём среди других видов сварки занимает ручная дуговая сварка - сварка плавлением штучными электродами, при которой подача электрода и перемещение дуги вдоль свариваемых кромок производится вручную. Дуга горит между стержнем электрода и основным металлом. Под действием теплоты дуги электрод и основной металл плавятся, образуя металлическую сварочную ванну. Капли жидкого металла с расплавляемого электродного стержня переносятся в ванну через дуговой промежуток. Вместе со стержнем плавится покрытие электрода, образуя газовую защиту 3 вокруг дуги и жидкую шлаковую ванну на поверхности расплавленного металла.

Металлическая и шлаковая ванны вместе образуют сварочную ванну. По мере движения дуги металл сварочной ванны затвердевает и образует сварной шов 6. Жидкий шлак по мере остывания образует на поверхности шва твёрдую шлаковую корку, которая удаляется после остывания шва.

Для обеспечения заданного состава и свойств шва сварку выполняют покрытыми электродами, к которым предъявляют специальные требования (стальные покрытые электроды для ручной дуговой сварки и наплавки изготовляют в соответствии с ГОСТ 9467-75).

Сварочный пост для ручной дуговой сварки оснащается источником питания, токоподводом, необходимыми инструментами, принадлежностями и приспособлениями.