Смекни!
smekni.com

Підвищення довговічності деталей нанесенням зносостійких покриттів плазмово-порошковим методом (стр. 2 из 6)

Публікації. У дисертаційній роботі викладені результати виконаних досліджень, проведених у період з 1997 - 2006 р.р. Основні матеріали дисертаційної роботи викладено у 21 публікації автора по темі дисертації (17 в фахових виданнях, та 4 в інших), а також знайшли відображення в підручнику і методичних посібниках.

Структура і обсяг дисертації. Дисертація складається із вступу, шести розділів, загальних висновків, списку використаних джерел з 208 найменувань та 4 додатків. Основний зміст викладений на 150 с. і включає 41 табл., 38 рис.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обґрунтовано актуальність роботи, її зв'язок з науковими програмами та темами. Визначено мету та завдання досліджень. Наведено наукову новизну та практичну значність отриманих результатів.

У першому розділі аналізується застосування традиційних, найбільш часто використовуваних методів нанесення покриттів для зміцнення поверхневого шару та відновлення деталей. У більшості випадків ці методи вирішують поставлені перед виробництвом завдання. Однак всі вони мають і характерні недоліки. Нанесення покриттів значної товщини традиційними методами призводить до перегріву деталей (електродугове наплавлення, а також під шаром флюсу та інші).

Перевагою методів відновлення деталей із застосуванням висококонцентрованих джерел енергії є швидкий локальний розігрів поверхні та відведення тепла при обробці. Висока температура в зоні безпосереднього нагріву забезпечує нанесення покриттів навіть із малотехнологічних матеріалів. Завдяки великій швидкості охолодження нанесеного покриття відбувається процес гартування з рідкого стану, що забезпечує високу твердість покриття.

Аналіз способів нанесення покриттів показав, що найкращі технічні показники забезпечує плазмовий метод. Він дозволяє одержати заданий склад вже в першому шарі завдяки малому проплавленню поверхні деталі. Через це у два - три рази (у порівнянні з дуговим наплавленням під шаром флюсу) знижуються витратні матеріали і час на обробку. Завдяки незначному тепловому впливу на основний метал при плазмовій обробці залишкові напруження розтягнення у відновленому шарі значно зменшуються. Це підвищує стійкість проти розтріскування та зменшує схильність до втомного руйнування деталей при експлуатації. Метод не потребує великих припусків на механічну обробку. Висока температура плазмового потоку дозволяє використовувати будь-які матеріали для покриттів. Процес відрізняється високою продуктивністю.

Для покриття найбільш доцільно використовувати порошкову композицію заданого складу. Це дозволяє регулювати його хімічний склад шляхом одночасної подачі в плазмову дугу двох або більше порошкових композицій. Плазмовий метод має досить високий ККД (60...80%), відрізняється простотою контролю технологічного процесу і забезпечує якісне сплавлення основного та присадочного матеріалів. Товщина покриття може досягати 3 - 5 мм.

Вибір порошкових композицій визначається вимогами до експлуатації деталей. Залежно від цих факторів розглянуто порошкові композиції, які ефективні для деталей різного призначення. Показано, що найбільшу твердість та зносостійкість мають покриття, які забезпечують формування карбідів вольфраму, бору, титану та хрому.

Найчастіше використовують леговані матеріали на основі заліза. Вони забезпечують досить високу твердість (від 55 до 60 HRCэ), а при вмісті хрому 3 - 5% ще й достатню в'язкість. Такі матеріали в 3 - 10 разів дешевші за твердосплавні порошки.

В теперішній час простежується стійка тенденція до використання суміші порошкових композицій. Такий підхід до застосування матеріалів дозволяє досить гнучко змінювати хімічний склад покриттів, прогнозувати та регулювати їх властивості.

Виконано аналіз публікацій по структуроутворенню при плазмовому методі нанесення покриттів. Показано, що в процесі обробки формується зона сплавлення, структура якої визначається хімічним складом матеріалу покриття та деталі, а також параметрами обробки (сила струму, швидкість обробки, обсяг нанесеного матеріалу, попередній або супутній підігрів, схема нанесення валиків).

У другому розділі наведені методи і методики досліджень. Розроблено методологію досліджень, яка включає проведення експериментів по оцінці структури, властивостей покриттів з урахуванням складу використовуваного матеріалу, режимів процесу нанесення покриття, експериментальних досліджень для оцінки протікання дифузійних процесів між покриттям та підшаром, що забезпечують міцність їхнього зчеплення. Запропоновано послідовність проведення експериментів для вирішення поставлених завдань і досягнення мети роботи.

На основі аналізу умов експлуатації розглянутих деталей, вимог щодо них, а також вибору застосованих типів зразків і видів випробувань, використані спеціальні методи оцінки властивостей покриттів. Міцність зчеплення покриття з основою оцінювали за методикою, запропонованою Гуляєвим А.П. і Гудцовим Н.Т., на спеціальних зразках, вирізаних безпосередньо із шийок колінчастого валу у місці перехідної зони. Випробування проводили на приладі для визначення мікротвердості ПМТ - 3 при навантаженнях 50, 100, 150 та 200 г, а потім за емпіричними залежностями оцінювали sв.

Дослідження структури та властивостей покриття виконували безпосередньо на матеріалі колінчастих валів (сталь 45) і хрестовин карданних валів (сталь 30ХГТ). Нанесення покриття методом плазмово-порошкового наплавлення здійснювали різним співвідношенням порошкових композицій (табл. 1). При виборі матеріалів покриття керувалися мінімальною вартістю порошків і враховували вміст вуглецю в деталях. Порошкову композицію підбирали так, щоб забезпечити концентрацію вуглецю в покритті близьку до його концентрації в деталях.

Для оцінки мікроструктури, фазового складу, визначення особливостей формування покриття та зони термічного впливу використовували сучасні комплексні методи досліджень: металографічний, хімічний, електронно-мікроскопічний, мікрорентгеноспектральний, рентгеноструктурний аналіз, визначення рівня твердості, мікротвердості та інші. Крім цього, визначали зносостійкість покриття.

Ці комплексні методи досліджень використані.

Таблиця 1

Хімічний склад порошкових матеріалів

Матеріал Зміст хімічних елементів, % мас.
Fe Cr Ni B C Si Mn Mo Cu
ПЖН4Д2М Осн. 3,62 0,054 0,05 0,1 0,5 1,68
ФМИ – 2 Осн. 10,43 2,87 0,77 2,62 4,49

Розроблено методику оцінки температурних полів, які формуються під час нанесення покриття плазмово-порошковим методом, залежно від параметрів процесу. Використано статистичні методи обробки даних і планування експерименту.

У третьому розділі аналізується вплив хімічного складу порошкових композицій і параметрів обробки на розподіл елементів, фазовий склад і властивості покриттів.

Порівняльними дослідженнями нанесення покриттів з використанням різної частки порошкових композицій (табл. 2) показано, що для забезпечення вимог технічних умов найбільш ефективною є композиція, яка складається з 40% ФМИ – 2 + 60 % ПЖН4Д2М. Вона забезпечує досягнення необхідної твердості рівної 52 - 55 HRC, при зміцненні та відновленні колінчастих валів. Зміна вмісту хімічних елементів у покриттях з різною часткою порошкових складових наведена на рис. 1.

Забезпечення вимог по твердості робочого шару хрестовин на рівні 57 - 65HRC досягається використанням порошкової композиції, що складається з 50% ФМИ - 2 + 50% ПЖН4Д2М.


Таблиця 2

Вміст хімічних елементів у різних поєднаннях порошкових композицій

№ композиції Співвідношення Хімічні елементи, %
Fe C Si Mn Cr Ni B Mo Cu
1 80% ФМИ-2 + 20% ПЖН4Д2М 81,86 0,63 2,11 3,61 8,34 0,72 2,29 0,1 0,34
2 50% ФМИ-2 + 50% ПЖН4Д2М 86,41 0,41 1,34 2,29 5,22 1,81 1,44 0,25 0,84
3 40% ФМИ-2 + 60% ПЖН4Д2М 87,89 0,37 1,08 1,86 4,172 2,17 1,15 0,3 1,01
4 20% ФМИ-2 + 80% ПЖН4Д2М 90,96 0,2 0,56 0,97 2,09 2,89 0,57 0,4 1,34

Рис. 1. Експериментальні оцінки середніх концентрацій хімічних елементів у покриттях, нанесених на шийки колінчастих валів при використанні різних порошкових композицій

Виконано аналіз впливу температурних параметрів обробки. Показано, що при нанесенні покриттів на шипи хрестовин струмом в інтервалі значень 120 – 150 А падіння концентрації всіх елементів було істотним: для Ni складало 29,47%, а Cr - 26,53%. При нанесенні покриттів з використанням струму в діапазоні 150 - 180 А величина вигару легуючих елементів, у порівнянні з першим інтервалом, змінюється незначно, і вони розподіляються по перерізу покриття більш рівномірно. Так, концентрація Ni і Cr знижувалася лише на 0,58% й 5,55% відповідно.

Покриття з оптимальним співвідношенням порошкових композицій для колінчастих валів і хрестовин карданних валів забезпечують однорідну структуру з дисперсними дендритами, без наявності пор, тріщин і часток нерозплавленого порошку (рис. 2). Основною структурою нанесеного покриття є аустеніт і мартенсит (~50 та 35% відповідно) з невеликою часткою фериту та карбідів.