Смекни!
smekni.com

Пристрій для вимірювання температури та артеріального тиску (стр. 3 из 4)

1.2.5 Прямий метод

Інвазивний (прямий) метод вимірювання АТ застосовується тільки в стаціонарних умовах при хірургічних втручаннях, коли введення в артерію пацієнта зонда з датчиком тиску необхідне для безперервного контролю рівня тиску. Перевагою цього методу є точність (в тому числі при аритміях), можливість реєстрації АТ при кожному серцевому скороченні. Проте пацієнти з інвазивним моніторингом АТ вимагають спостереження через небезпеки розвитку важкої кровотечі у разі від'єднання зонда, утворення гематоми або тромбозу в місці пункції, інфекційних ускладнень[3].

1.2.6 Вимірювання артеріального тиску за допомогою датчиків тиску

Датчики тиску мають досить широке застосування. Принцип реєстрації тиску служить основою для багатьох інших типів датчиків, наприклад датчиків маси, положення, рівня, витрат рідини та ін. В переважній більшості випадків індикація тиску здійснюється завдяки деформації пружних тіл, наприклад діафрагми, трубки Прудона, гофрованої мембрани. Такі датчики мають достатню міцність, малу вартість, але в них ускладнено отримання електричних сигналів. Потенціалометрочні (реостатні), ємнісні, індукційні, магнітострикційні, ультразвукові датчики тиску мають на виході електричний сигнал, але порівняно складні у виготовленні.

На даний момент в якості датчиків тиску все ширше використовуються тензометри. Особливо перспективними представляються напівпровідникові тензометри дифузійного типу. Дифузійні тензометри на кремнієвій підкладці мають високу чутливість, малі розміри і легко інтегруються з необхідними периферійними схемами.

Резистивний тензодатчик представляє собою основу із закріпленим на ньому резистивним елементом. Під дією сили основа із закріпленим елементом змінює свої розміри (стискається або розтягується), отже, резистивний елемент також змінює свій опір. Тензодатчик є найбільш відомим перетворювачем сили в електричну величину.

На рис. 1.4 зображено ненаклеюваний тензодатчик, що складається з дрота, натягнутого між двома стійками. Сила, впливаючи на дріт (площею перетину = А, завдовжки = L, з питомим опором = р) спричиняє подовження або стиснення останнього, що призводить до пропорційного збільшення або зменшення її опору:


де, GF характеризує тензочувствітельность (значення 2,0…4,5 – для металів і більше 150 для напівпровідників).

Безрозмірна величина AL/L є мірою сили, прикладеної до дрота, і виражається в мікрострейнах (1 με = 10-6 см/см), що є тим же самим, що і мільйонна частина (ppm) (у вітчизняній літературі застосовується термін овд – одиниці відносної деформації, чисельно рівний кількості мікрострейн). З рівності виходить, що чим більша тензочувствітельность, тим більша величина зміни опору і, отже, вища чутливість датчика.

Рисунок 1.4 – Ненаклеюваний дротяний тензодатчик

Наклеюваний тензодатчик (рис. 1.5) складається з тонкого дроту або провідної фольги, закріпленої на плоскій пластині. Ця конструкція приклеюється на основу. Датчик зазвичай встановлюється так, щоб його найбільш довга сторона була орієнтована у напрямі вимірюваної сили. Зазвичай наклеювані датчики використовуються набагато частіше ненаклеюваних.


Рисунок 1.5 – Наклеюваний дротяний тензодатчик

Фольгові датчики (рис. 1.6) є найбільш популярною версією наклеюваних тензодатчиків. Вони виготовляються методом фототравління і використовують ті ж метали, що і дротяні датчики (константан, нихром, сплав нікелю із залізом і т.д.). Дротяні датчики мають малу поверхню зв'язку з зразком основою, щозменшує струми витоку при високих температурах і дає більшу напругу ізоляції між чутливим елементом і основою. З іншого боку, фольгові чутливі елементи мають велике значення відношення площі поверхні до площі поперечного перерізу (чутливість) і стабільніші при критичних температурах і тривалих навантаженнях. Велика площа поверхні і малий поперечний переріз також забезпечують хороший температурний контакт чутливого елементу із основою, що зменшує саморозігрів датчика.

Рисунок 1.6 – Металофольговий тензодатчик


Напівпровідникові тензодатчики використовують п'єзорезистивний ефект, що виникає в деяких напівпровідникових матеріалах, таких як кремній і германій, і використовуються для отримання більшої чутливості пристрою і його вихідного сигналу. Можна зробити так, щоб напівпровідникові датчики мали при їх деформації або позитивний, або негативний сигнал. Їх можна зробити достатньо малими за розмірами при збереженні високого номіналу опорів. Напівпровідникові тензомости мають в 30 разів більшу чутливість, ніж металофольгові, але вони залежать від температури і важко піддаються компенсації. Зміна їх опору від деформації також нелінійна. Для прецизійних вимірювань їх не використовують так само широко, як стабільніші металофольгові, проте, в додатках, де варіації температури малі, а величина чутливості важлива, вони можуть мати певні переваги.

Напівпровідникові датчики тиску дифузійного типу широко використовується для вимірювання артеріального тиску крові, в автомобільній електроніці, в компресорах. Основні проблеми, які характерні для цих датчиків і які ймовірно будуть вирішені в найближчому майбутньому, – це усунення температурної залежності, підвищення стійкості до зовнішнього середовища і збільшення терміну служби [6].

1.3 Мікропроцесори та мікроконтролери

В приладі, призначеному для вимірювання температури та артеріального тиску, для обробки сигналу і організації інтерфейсу застосовуються мікропроцесори або мікроконтролери. Основними характеристиками контролерів є: число розрядів, тактова частота ядра, тактова частота шини, об'єм кеш-пам'яті і оперативної пам'яті, функції. Універсальні процесори застосовуються для вирішення різних обчислювальних завдань і зазвичай мають повний набір команд CISC. Спеціалізовані мікроконтролери мають вужчий діапазон застосування і зазвичай призначені для керування певним. Вони мають обмежений набір команд RISC, простішу структуру і відповідно низьку ціну. До окремого класу слід віднести цифрові сигнальні процесори, спроектовані спеціально для обробки сигналів в реальному часі (звук, зображення, вимірювальні сигнали).

Архітектура сигнальних процесорів має помітні особливості:

– швидке виконання операцій, характерних для цифрової обробки сигналів (наприклад, операція "множення з накопиченням" зазвичай виконується за один такт);

– цикли із заздалегідь відомою довжиною;

– більшість сигнальних процесорів мають вбудовану оперативну пам'ять, з якої може здійснюватися вибірка декількох машинних слів одночасно;

– детермінована робота з відомими тривалостями виконання команд, що дозволяє виконувати планування роботи в реальному часі;

– досить велика довжина конвеєра;

– в порівнянні з мікроконтролерами, обмежений набір периферійних пристроїв;

– значно менше споживання потужності, ніж у еквівалентних за продуктивністю процесорів загального призначення.

2. ОБҐРУНТУВАННЯ СПОСОБУ ПОБУДОВИ ФУНКЦІОНАЛЬНОЇ СХЕМИ ПРИСТРОЮ

Пристрій призначений для вимірювання температури тіла та артеріального тиску людини зі збереженням інформації на картку пам’яті ММС. Функціональна схема пристрою зображена на рис. 2.1.

Рисунок 2.1 – Функціональна схема пристрою для вимірювання температури та артеріального тиску

Пристрій складається з мікроконтролера МК, блоку вимірювання тиску, датчика температури, клавіатури, картки пам’яті, РК дисплею та блоку живлення.

При вимірювання температури тіла датчик температури знаходиться в безпосередньому контакті зі шкірою людини. Виміряний сигнал з датчика поступає на порт Р0 МК. МК обробляє сигнал і за допомогою драйвера керування передає його на РК дисплей.

Блок вимірювання тиску складається з датчика тиску, манжети, насоса, клапана, ФВЧ. При вимірюванні тиску на руку людини вдягається еластична манжета. Повітря накачується в манжету за допомогою насоса. Після встановлення в манжеті високого тиску насос вимикається і повітря випускається з манжети через клапан, що призводить до плавного зниження тиску в манжеті. Формування сигналів керування двигунами насоса та клапана здійснює МК.

При стисканні руки пацієнта манжетою можна спостерігати невеликі пульсації тиску (шум) в манжеті (рис. 2.2, пунктир). Це відбувається внаслідок зміни тиску при циркуляції крові в організмі пацієнта. Сигнал з виходу датчика тиску фільтрується за допомогою ФВЧ, який спроектовано на частоту 1 Гц, і посилюється. Так отримується сигнал серцебиття. Він показує зміну в сигналі тиску і є графічним зображенням серцевого ритму пацієнта (рис. 2.2, суцільна лінія).З виходу ФВЧ сигнал поступає на вхід "+" компаратора. На вхід "-" компаратора подається еталонна напруга. Імпульси, що перевищують рівень еталонної напруги, призводять до появи сигналу на виході компаратора. Таким чином, компаратор починає працювати при появі тонів Короткова . Тиск, що фіксується за допомогою АЦП МК в момент появи тонів Короткова, відповідає значенню САТ, а тиск, що фіксується в момент їх зникнення – ДАТ. САТ і ДАТ визначаються за допомогою простого осцилометричного способу. При пониженні тиску в манжеті, амплітуда сигналу серцевих скорочень зростає, як тільки тиск в манжеті опуститься до значення тиску систоли пацієнта. При подальшому пониженні тиску в манжеті амплітуда пульсацій збільшується, поки не досягає максимального значення в точці так званого середнього артеріального тиску, а потім швидко знижується, поки не досягне точки тиску діастоли. Виміри тиску, які відповідають САТ і ДАТ зберігаються в пам’яті МК і виводяться на РК дисплей після закінчення циклу вимірювання.