Смекни!
smekni.com

Проект участка термической обработки дисковых фрез (стр. 3 из 9)

1.4.1 Маршрутная технология изготовления дисковых фрез

Маршрутная технология – это последовательность технологических операций от начальной до установки детали в узел или механизм.

Маршрутная технология изготовления дисковых фрез из стали Р6М5 приведена на рис. 1.3:

Контролируемый парамер
Входной контроль
М1
Химический анализТвердость в состоянии поставки
Заготовительное отделение
М2
Порезка на заготовкиКонтроль по размерам
Механическийцех
М3
Горячая штамповкаМеханическай обработка
Обезжиривание
С4
Сушка
С5
Время сушкиТемпература сушки 150-300 ºС
Закалка
Т6
Температура аустенизацииВыдержкаСостав солиСкорость охлаждения
Мойка
Т7
ВремяТемпература 80-100 ºССостав моечной среды
Трехкратный отпуск
Т8
ТемператураВремя
ОТК
Т9
ТвердостьОтсутствие трещин и волосовинСтабильность размеров

Рисунок 1.3 – Маршрутная технология изготовления дисковых фрез

1. Входной контроль представляет собой контроль поступающего в цех материала по следующим параметрам: химический состав, твердость, степень чистоты металла.

Химический состав контролируется в соответствии с ГОСТ 19265-73. Дилатометрическим методом определяется температура полной аустенизации Ас3.

2. После входного контроля металл поступает в кузнечный цех, где он подвергается горячей пластической деформации – штамповке.

3. После штамповки заготовка поступает в механической отделение, где производится зачистка заусенцев и шлифование боковых поверхностей. Так же в механическом отделении производится контроль геометрии форм и размеров, выявление поверхностных дефектов.

4. Сушка деталей проводится при температуре 150-200 ºС для предотвращения попадания влаги в соляную печь вместе с деталью. Время сушки одной партии деталей составляет 20-30 минут.

5. Закалка производится с учетом температуры аустенитного превращения. Время выдержки влияет на полноту превращения стали. Скорость охлаждения должна быть такой, чтобы после закалки получить требуемую структуру и по возможности исключить коробление.

6. Тройной отпуск необходим для полного превращения аустенита в мартенсит (снижения количества остаточного аустенита), снижения напряжений, образовавшихся в результате мартенситного превращения – то есть для получения структуры, обеспечивающую заданные технологические свойства.

7. Контроль ТО производится по твердости, отсутствию трещин и волосовин. Твердость обрабатываемой детали контролируется неразрушающим методом контроля – 100 % от партии, 30 % партии контролируется на Роквелле. Твердость должна составлять 61-62 единицы HRC. Контроль на отсутствие трещин и волосовин проводится при помощи дефектоскопа – 3% от партии. После контроля на каждую деталь составляется сопроводительный документ и ставится штамп.

8. Окончательная механическая обработка представляет собой заточка и чистовое шлифование режущих кромок.

1.4.2 Выбор и обоснование технологического процесса

При выборе технологических процессов термической обработки рекомендуется руководствоваться следующими прогрессивными направлениями:

1) Использование остаточной теплоты от предыдущей операции, например, теплоты операций горячего формообразования (ковка, штамповка, литье, прокатка, сварка и др.) для операций последующей термообработки (отжиг, нормализация, закалка).

2) Применение скоростных методов нагрева на основе:

- создания большого перепада температур между нагреваемым устройством и изделием;

- концентрации значительного количества электроэнергии в нагреваемом металле (например, индукционный нагрев в поле токов высокой частоты).

3) Преемственность операций структурного изменения с использованием тепла таких операций как, например, цементация и нитроцементация, для непосредственной, прерывной закалки, самоотпуска и т. д.

4) Использование повышенных температур нагрева для ускорения операций структурного превращения и диффузионных процессов.

5) Применение специальных мероприятий для уменьшения деформаций на заключительных стадиях термической обработки:

- применение предварительной термической обработки (нормализации, отжига и др.) при температурах, немного превышающих температуру завершающей обработки (цементации и т.п.);

- охлаждение при закалке в горячей изотермической среде (нагретое масло, расплавы щелочей селитры или щелочей и другие);

- охлаждение нагретых изделий сложной конфигурации в зажимных приспособлениях (штампы, валки и др.).

6) Интенсификация процессов с помощью воздействия активизаторов, например:

- ультразвука для охлаждения (при закалке) и очистке поверхностных загрязнений;

- магнитного поля для охлаждения при отпуске.

7) Применение сред нагрева и охлаждения, предотвращающих окисление и обезуглероживание:

- газовые искусственные атмосферы и вакуум:

- расплавы солей и щелочей;

- псевдосжиженный слой из твердых сыпучих частиц (корунд и др.) с продувкой газами.

8) Замена трудоемких процессов химико-термической обработки скоростной закалкой.

9) Применение комбинированной обработки (высокотемпературная термомеханическая обработка и др.).

При выборе технологического процесса необходимо выбрать наиболее рациональные и совершенные способы термической обработки, обеспечивающие получение высоких свойств изделий и одновременно упрочняющих, сокращающих или удешевляющих процессы термической обработки.

Свои служебные свойства (высокую твердость, износостойкость, теплостойкость) инструментальные стали получают в результате одного из видов упрочнения, приведенных ниже.

1. Закалка, обеспечивающая мартенситное превращение (дополнительно проводится низкий отпуск для уменьшения внутренних напряжений, после которого структура представляет собой мартенсит отпуска). Этому способу упрочнения подвергаются нетеплостойкие или полутеплостойкие стали с достаточно высоким содержанием углерода.

2. Дисперсионное твердение после закалки на мартенсит. Этому способу упрочнения подвергаются теплостойкие стали: быстрорежущие (Р18, Р12, Р9, Р6М5, Р6МЗ, Р18К5Ф2, P6M5KS, Р9М4К8 и др.), штамповые (4ХЗВМФ, ЗХЗМЗФ, 4Х5В2ФС, 4Х5МФС, ЗХ2В8Ф и др.) и мартенситно-стареющие.

Следует отметить, что в упрочнение при термической обработке быстрорежущих и штамповых сталей, испытывающих при закалке мартенситное превращение, образование мартенсита вносит определенный вклад. При последующем высоком отпуске, обеспечивающем дисперсионное твердение, упрочнение в результате мартенситного превращения частично снимается, но мартенситная структура стимулирует процесс выделения дисперсных избыточных фаз.

Таким образом, необходимо рассмотреть варианты термической обработки, основанные на закалке и отпуске.

Стали, упрочняемые в результате мартенситного превращения или мартенситного превращения с дисперсионным твердением, закаливают соответственно с температур, обеспечивающих достаточно полное насыщение аустенита углеродом или легирующими элементами.

Для инструментальных сталей применяют несколько видов закалки:

1. Непрерывная закалка. Закалку этого вида применяют в основном для инструмента из углеродистых и низколегированных сталей, обладающих малой устойчивостью переохлажденного аустенита и требующих вследствие этого ускоренного охлаждения, а также для инструмента относительно простой формы, изготовленного из инструментальных сталей повышенной и высокой прокаливаемости. Недостатком этого вида закалки является возникновение повышенных внутренних напряжений, что может в отдельных случаях вызвать сильное коробление или образование трещин.

2. Ступенчатая закалка. Такую закалку применяют для инструмента сложной формы в основном из сталей повышенной и высокой прокаливаемости. Инструмент охлаждают в горячих средах, а затем на воздухе. Это замедляет скорость охлаждения в интервале мартенситного превращения, уменьшает напряжения, деформацию и опасность образования трещин. Температура горячих сред должна быть выше температуры начала мартенситного превращения, а время выдержки достаточным для выравнивания температуры по сечению инструмента, но таким, чтобы не успело начаться бейнитное превращение.