Смекни!
smekni.com

Проектирование шарообразного резервуара (стр. 4 из 4)

S0 =1,98´6´103/233,3=23,5 (мм)

Примем толщину стенки S0=24мм

7. Расчёт объёма и площади поверхности сферы

Объём сферы определяется по формуле: V=4R03/3=4´4.13´63/3= 904.8 (м3) , примем V=905(м3)

Площадь поверхности сферы определяется по формуле:

S= pD2,

где D-диаметр сферы=12 м

S= pD2=3.14´(12´103)2=452.2´103(мм)

Для расчёта объёма резервуара наиболее предпочтительной является конструкция показанная в таблице на рисунке . При диаметре сферы d=12м и объёме резервуара V=905м3 число элементов(лепеcтков)nл составляет 24штуки.


8. Расчёт длины кольцевых и меридианных швов

Примем высоту шарового сегмента h0=1м, тогда h=d-2h0 , где

h0=высота шарового сегмента

dсег=2a

Радиус шарового сегмента находится по формуле

a=Öh0´(2R0-h) =1(12-1)=3.32м

Длина кольцевого шва равна: Lk =p dсег , где

dсег=диаметр сегмента=2a

Lk=3.14´6.64=20.8 (м)

Длина меридионального шва определяется по формуле

Lм=l=2pR0a/360 , где

a=центральный угол=1250, который был найден графическим путём, из построения графического резервуара в масштабе 1:100

Lм=l=2´3.14´6´125/360=13,09(м)

Ширина одного лепестка в зоне соединения со сферическим днищем составляет:


9. Проверочный расчёт кольцевого и меридианного швов

Давление распределяется равномерно по внутренней поверхности сферического резервуара. На сварные швы действует усилие N, которое стремится разорвать изделие: N=P×S , где S площадь днища (Sд) и сферической части без днищ (Sсф). Площадь днища определяется по формуле :

Площадь двух лепестков (Sсф2) сферической части резервуара без днищ определяется по формуле :

Напряжение, возникающее в кольцевом шве равно:

Напряжение, возникающее в меридиональном шве, между двумя лепестками сферической части резервуара рано:

Так как напряжения в кольцевом

и меридиональном
меньше допустимого sр


10. Конструкция стыка с размерами

Условное обозначение сварного соединения – С18.

Рисунок - Конструктивные элементы подготовленных кромок свариваемых деталей:

1), 2) – соединяемые детали;

3) – флюсовая подушка.

Рисунок - Конструктивные элементы сварного шва (швы №1 и №2, рисунок

1), 2) – соединяемые детали;

3) – сварной шов – трехслойный (выполнен за три прохода).

11. Определение параметров режима сварки

Таблица - Определение параметров режима сварки

№ слоя Поляр. тока dпп Iсв (А) U (В) Vпп м/ч V сварки(м/ч)
1 обратная 2 150-200 30-34 90-120 15-25
2 обратная 2 200-400 32-34 90-120 25-35
3 прямая 5 350-600 36-40 90-120 25-40
4 прямая 5 500-800 38-40 90-120 30-40
5 прямая 5 700-1000 40-44 90-120 30-40

12. Условное обозначение сварных швов

Рисунок - Обозначение сварных соединений

13. Дефеткы образующиеся при сварке

Остаточные сварочные напряжения и деформация.

Дефекты в соединениях бывают двух типов: внешние и внутренние. В сварных соединениях к внешним дефектам относят наплывы подрезы, наружные непровары и несплавления, поверхностные трещины и поры. К внутренним – скрытые трещины и поры, внутренние непровары и несплавления, шлаковые включения и др. В паяных соединениях внешними дефектами являются наплывы и натеки припоя, неполное заполнение шва припоем; внутренними – поры, вкючения флюса, трещины и др.

Качество сварных и паяных соединений обеспечивают предварительным контролем материалов и заготовок, текущим контролем за процессом сварки и пайки и приемочным контролем готовых сварных или паяных соединений. В зависимости от нарушения целостности сварного соединения при контроле различают разрушающие и неразрушающие методы контроля.


Заключение

В данной курсовой работе мной был спроектирован шарообразный резервуар предназначенный для хранения жидкости. Произведен выбор типа раскроя оболочки, типа и размеров проката, сварочной проволоки, флюса, формы разделки кромок и были определены параметры режима сварки. Из расчетов углеродного эквивалента следует, что сталь нужно сваривать только с предварительной термообработкой, подогревом в процессе сварки и последующей термообработкой. Показаны конструкции стыков с размерами и условные обозначения сварных швов. Были проведены расчеты по допустимым напряжениям и по предельным состояниям. Были рассчитаны толщина стенки шарообразного резервуара, объём сферы и площадь поверхности, длины меридианного и кольцевого швов. По проверочным расчетам кольцевого и меридианного швов был сделан вывод о работоспособности конструкции


Список использованных источников

1 Николаев Г.А., Курнин С.А., Винокуров В.А. Расчёт проектирование и изготовление сварных конструкций: учебное пособие для вузов. - М.: Высш.шк., 1971.

2 Сварка в машиностроении: Справочник в 4-х т. / Под ред. В.А. Винокурова - М.: Машиностроение, 1979-т.3.

3 Технология электрической сваркой металлов и сплавов плавленим / Под ред. Акад. Б.Е. Патона - М.: Машиностроение, 1974.

4 Николаев Г.А., Курнин С.А., Винокуров В.А. Автоматизация проектирования сварных конструкций: Учеб. пособие - М.: Высш. шк., 1983.

5 Сварка в машиностроении: Справочник / Под ред. Н. А. Ольшанского.-М.: Машиностроение, 1978-т.1.

6 Марочник сталей и сплавов / В.Г. Сорокин, А.В. Волосникова, С.А. Вяткин. Под общей ред. В.Г. Сорокина. – М.: Машиностроение, 1989.

6 ГОСТ 8713-79. Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры.

7 ГОСТ 9087-81. Флюсы сварочные плавленые. Техническая документация.

8 ГОСТ 19903-74. Прокат листовой горячекатаный. Сортамент.

9 ГОСТ 19521-74. Сварка металлов. Классификация.