Смекни!
smekni.com

Производство стали (стр. 2 из 4)

1. Точечные (рис. 3):

а) Наличие вакансий, т.е. мест в решетке, не занятых атомами. Это происходит из-за смещения атомов от равновесного состояния. Число вакансий увеличивается с ростом температуры.

Рис. 3 Дефекты кристаллической решетки

б)

Дислоцированные атомы, т.е. атомы вышедшие из узла решетки и занявшие место в междоузлии. в) Примесные атомы, т.е. в основном металле имеются чужеродные примеси. Например, в чугуне основными атомами являются атомы железа, а примесными – атомы углерода, которые или занимают место основного атома, или внедряются внутрь ячейки.
2. Поверхностные несовершенства, имеющие небольшую толщину при значительных размерах в двух других направлениях.
3. Линейные несовершенства (цепочки вакансий, дислокаций и т.д.). Линейные дефекты малы в двух направлениях и значительно большего размера в третьем.

Количество дефектов в металле оказывает существенное влияние на его прочность. На первом участке кривой (рис. 4) при минимуме дислокаций меньше возможностей для сдвига атомов по кристаллической решетке, поэтому будет максимум прочности металла (теоретическая, недостижимая прочность). Путем восстановления из хлористого или бромистого железа в лабораторных условиях выращивают «усы» кристаллов железа длиной до 10 см и диаметром 0,5 … 1 мкм, имеющие относительно высокую прочность на растяжение (бb = 1200 …1300 кгс / мм2). Для сравнения, высокопрочная сталь имеет прочность всего 150 …200 кгс / мм2, т.е. на порядок ниже, а прочность железных «усов» примерно в 100 раз выше, чем у обычного железа (минимум на кривой).

Повышение прочности с увеличением плотности дислокаций выше их критического значения объясняется тем, что имеются не только параллельные, но и взаимопересекающиеся (объемные) дислокации. Они препятствуют взаимному перемещению металла и, как результат, приводят к увеличению прочности металла.

Рис. 4 Влияние количества дефектов на прочность сплава (стали)

Все современные способы упрочнения металлов (легирование, закалка, прокатка, ковка, штамповка, волочение и т.д.) – это увеличение количества дефектов в металле. Наивысшая прочность, которую можно получить путем увеличения количества дефектов в металле, составляет около 1/3 от теоретически возможной (идеальной) прочности.

Кристаллизация металлов

Рис. 5 Кривые нагрева и охлаждения аморфного тела

При нагреве и охлаждении (рис. 5) аморфных тел (смола, стекло, пластмассы,…) при переходе из жидкого в твердое состояние качественных изменений не происходит. В твердом состоянии атомы в аморфном теле расположены так же хаотично, как и в жидком, имеют только меньшую степень перемещения. Из рис 1. 5 видим, что температура плавления Тпл равняется температуре кристаллизации Ткр, а переход из одного состояния в другое (из твердого в жидкое – точка Тпл, и из жидкого в твердое – точка Ткр) происходит скачкообразно.

По другому ведут себя металлы (рис. 1.6). На участке 1 – 2 происходит нагрев металла; кристаллическая решетка сохраняется, но атомы увеличивают амплитуду колебаний за счет поглощенной тепловой энергии. На горизонтальном участке 2 – 3 также подводится тепло, но температура Тпл не повышается, т. к. подводимое тепло целиком расходуется на разрушение кристаллической решетки. Атомы переходят в неупорядоченное (жидкое) состояние. После разрушения последнего участка кристаллов, после точки 3 начинается повышение температуры жидкого металла по линии 3 – 4.

При охлаждении (4 – 5) на горизонтальном участке 5 – 6 происходит кристаллизация, при которой выделяется тепло, поэтому процесс проходит при постоянной температуре Ткр. Кристаллизация металла происходит не при температуре t, величина, которая зависит от D плавления Тпл, а при некотором переохлаждении природы металла, наличия примесей и от скорости охлаждения.

Кристаллизация начинается с того, что при понижении температуры до значения Ткр начинают образовываться мелкие кристаллики, называемые центрами кристаллизации (зародышами). При дальнейшем уменьшении энергии металла происходит рост кристаллов и в то же время в жидкости возникают новые центры кристаллизации, т.е. процесс кристаллизации состоит из двух одновременно происходящих процессов: зарождение новых центров кристаллов и роста кристаллов из ранее образованных центров. Мелкокристаллический металл более твердый и прочный, чем крупнокристаллический. Следовательно, подбором температуры переохлаждения t можно регулировать механические характеристики металла. Многое зависит от количества нерастворимых примесей, которые являются центрами кристаллизации. Чем больше этих частиц, тем меньше зерна металла. Полученная в конверторе или в мартене, сталь (0,5…3 тн) заливается в изложницу. Большой перепад температур (свыше 1500 С) будет между расплавленным металлом и атмосферой по высоте и ширине слитка. В результате на поверхности слитка, т.е. там, где имеется наибольший перепад температур, будет мелкозернистая структура, а в центре слитка при минимальном перепаде температур возникнут при кристаллизации крупные, а между ними – столбчатые кристаллы.

3. Химико-термическая обработка металлов

Химико-термическая обработка заключается в обработке готовых деталей при высоких температурах в активных средах, что приводит к изменению структуры и химического состава поверхностных слоев. Этот вид обработки применяется в том случае, когда свойства поверхностного слоя изделия должны быть иными, чем свойства внутренних слоев. Химико-термическая обработка позволяет получить более твердый износостойкий или коррозионностойкий поверхностный слой. Наиболее распространенным видом химико-термической обработки является цементация.

Цементация– процесс насыщения углеродом поверхностного слоя стали с целью повышения износоустойчивости рабочих поверхностей деталей. Количество углерода в поверхностном слое в результате цементации достигает 1–1,2%, при этом детали хорошо воспринимают закалку. Цементации подвергают стали с содержанием углерода до 0,3%. Глубина насыщения углеродом цементируемой поверхности 0,5–2 мм в зависимости от размеров детали.

Существует несколько способов цементации: твердым карбюризатором, жидким карбюризатором и газообразным карбюризатором (карбюризаторами называются смеси, богатые углеродом). Первым способом производится, в частности, цементация ножовочных полотен, губок клещей.

При цементации твердым карбюризатором детали тщательно очищают и укладывают в стальной ящик с науглероживающей смесью, состоящей из 5–6 мас. ч мелко истолченного древесного угля и 1 мас. ч. соды. Ящик закрывают крышкой, щели промазывают огнеупорной глиной, ставят в холодную печь, постепенно нагревают до температуры 850–920° С и выдерживают при этой температуре определенное время.

По окончании цементации ящики выгружают из печей, охлаждение деталей производится медленно в ящиках. После цементации детали подвергают обязательной термической обработке: закалке и низкому отпуску.

Цементация жидким карбюризатором осуществляется путем погружения деталей в соляные ванны при температуры 830 – 850° С. Карбюризатором при этом являются расплавленные соли, содержащие 75–80% углекислого натрия (сода), 10–15% поваренной соли и 6–10% карбида кремния. Цементация происходит за счет углерода, выделяющегося в ванне при 820–850° С в результате взаимодействия солей с карбидом кремния. Длительность процесса составляет 0,5–2 ч.

Газовая цементация заключается в насыщении поверхности стальных деталей углеродом в атмосфере углеродсодержащих газов.

Газовую цементацию осуществляют в герметически закрытых камерах (муфелях) печей периодического или непрерывного действия путем нагрева при температуре 930–950° С в среде углеродсодержащих газов, например естественных, состоящих в основном из метана и окиси углерода СО. Используют также жидкие карбюризаторы: бензол, пиробензол, осветительный керосин и сжиженный природный газ.

Продолжительность процесса устанавливается в зависимости от требуемой глубины слоя, подлежащего цементации.

4. Неметаллические конструкционные материалы и их применение в теплоэнергетике

Пластическими массами называются неметаллические материалы, получаемые на основе природных и синтетических полимеров и перерабатываемые в изделия методами пластической деформации.

К полимерам относятся природные или искусственные смолы. Искусственные смолы получают из продуктов переработки каменного угля, нефти и другого естественного сырья.

Пластические массы состоят из следующих компонентов: связующие (природные или искусственные смолы), наполнителе пластификаторы, красители и другие специальные добавки.

Смолы являются основой пластических масс и определяют их главные свойства.

Наполнители служат для придания пластической массе прочности, твердости и других свойств. Наполнители бывают органические и неорганические. Органическими наполнителями являются древесная мука, хлопковые очесы, целлюлоза, бумага, хлопчатобумажная ткань, древесный шпон. В качестве неорганических наполнителей используют асбест, графит, стекловолокно, стеклоткань, слюду, кварц.

Пластификаторы увеличивают пластичность и текучесть пластических масс, повышают морозостойкость. Пластификаторами являются спирты, камфары и др.

Красители окрашивают пластическую массу и изделия из нее в определенный цвет. Применяются как минеральные красители (мумия, охра, умбра), так и органические.

В состав пластических масс часто вводят специальные добавки, влияющие на свойства пластических масс, например стабилизаторы – вещества, предотвращающие разложение полимерных материалов во время их переработки и эксплуатации под воздействием атмосферных условий, повышенных температур и других факторов.