Смекни!
smekni.com

Разработка технологии электротермического получения силикоалюминия с использованием малозольных восстановителей (стр. 4 из 4)

3. Практикой эксплуатации печей различного типа установлена пропорциональная зависимость выхода шлака от числа междуэлектродных зон. В упомянутых зонах восстановление не завершается и образуется шлак, включающий оксикарбидные "комплексы" и SiC, выходящий из летки вместе с металлом. Это свидетельствует о предпочтительном использовании в производстве электротермического силикоалюминия мощных однофазных печей.

4. Установлена постоянная величина энергии активации процесса, составляющая 3,33 ·102 кДж/моль, что свидетельствует о протекании восстановления алюмосиликатов в кинетической области.

5. Установлено, что летучие компоненты восстановителя практически полностью, до ~1,1% масс, удаляются из брикетов при температурах ниже 1000оС, характерных для поверхностного слоя колошника печи, и не участвуют в восстановительных реакциях.

6. Образование пироуглерода в результате протекания реакций пиролиза летучих компонентов может иметь место лишь в нижних горизонтах колошника, где нет доступа воздуха. Пироуглерод, осаждаясь в малых количествах (до 1,4% масс.) на поверхности минералов, по-видимому, деформирует ее пограничный слой, активизируя его, и оказывает влияние на кинетику процесса, повышая скорость протекания восстановительных реакций.

7. Анализом данных промышленной эксплуатации трехфазных печей установлена взаимосвязь между дозировкой углерода в брикетах и степенью окисления нелетучего углерода. С увеличением содержания нефтяного кокса в смеси восстановителей окисление Снлт. повышается, при этом недостаток летучих компонентов требуется компенсировать повышением дозировки восстановителя в шихте. Выведена расчетная формула содержания Снлт. в брикетах с учетом нелетучего и общего углерода в смеси восстановителей и эмпирического коэффициента:


(Cнлт.)брик.@

8. Показатель восстановления помимо состава восстановителя также зависит от минеральной части шихты. В порядке возрастания массовой доли легкоплавкой фазы, шихты располагаются в следующий ряд: песчано-глиноземные – с каолином и ДСК – каолин-глиноземные. Для "удержания" в объеме брикета образующейся при нагреве легкоплавкой фазы необходима мешающая слиянию капель расплава в текущую массу "губка". Эту роль выполняет "пористый", после удаления летучих компонентов, восстановитель. Его "объемное" содержание в шихте должно уменьшаться при увеличении содержания нефтяного кокса в смеси с углем по Снлт. в обратной пропорции количеству минеральных составляющих, образующих жидкую фазу, в основном каолина.

9. Установлено, что добавка в брикеты сульфатов аммония и алюминия (1-2% масс.) в связи с низкими (>218-350оC) температурами их диссоциации увеличивает поверхность и реакционную способность восстановителя. При этом повышается глубина взаимодействия субоксидов Al2Oг и SiOг с углеродом шихты, что способствует более полному восстановлению сырья. Добавка CaSO4 повышает пористость брикетов за счет выделения CO2 при его восстановлении углеродом при 800-900оС. Плавками шихт с добавками (NH4)2SO4 и Al2(SO4)3 на однофазной двухэлектродной печи опытного завода вами мощностью 200 кВА показана возможность увеличения содержания малозольного нефтяного кокса в смеси с газовым углем по Снлт. до 60%.

Производительность печи по выпуску рафинированного сплава при использовании сульфатов аммония и алюминия возросла, соответственно, на ~12 и 8%, а удельный расход электроэнергии снизился на ~12 и 8%.

10. Применение "рыхлителей", гранул лигнина и древесной щепы, позволяет повысить содержание нефтяного кокса в смеси с газовым углем до 80% по Снлт. При проведении плавок производительность печи (при использовании лигнина) за счет уменьшения "спекания" колошника и улучшения схода шихты увеличилась на ~29%, расход электроэнергии и минеральной части шихты снизился, соответственно, на ~18 и 29%. С повышением содержания нефтяного кокса в смеси с углем требуется увеличивать количество "рыхлителя".

11. Плавками на герметизированной печи 200 кВА установлена возможность 100% использования нефтяного кокса в восстановителе с применением "рыхлителей". Производительность печи (при использовании древесной щепы) повысилась на ~13%, расход электроэнергии и минеральной части шихты сократился, соответственно, на ~11 и 17%. Герметизация снижает подсос воздуха на колошнике, уменьшая окисление летучих компонентов и нелетучего углерода шихты. Это способствует уменьшению дозировки Снлт. в шихте на ~7%.

12. Исследованиями шихт с коксом низкотемпературного термоконтактного крекинга установлено: прочность высушенных и прокаленных брикетов повышается, соответственно, на ~27 и 51%, электросопротивление – в 2,6 раза, а восстановимость на ~13%. Высокая активность КНТК обусловлена низкими температурами коксования и развитой реакционной поверхностью за счет отгонки серы при нагреве шихты. Эффективность КНТК подтверждена результатами опытных плавок: производительность печи возросла на ~22%; удельный расход электроэнергии и минеральной части шихты снизился на ~11 и 17%. Применение КНТК позволяет дополнительно получить в силикоалюминии V и Ni в количествах ~1 и 0,4% масс, соответственно. Эти элементы являются легирующими добавками в литейных сплавах AK12M2MгН, АЛ30СХ и др.

13. Ожидаемая экономическая эффективность использования предлагаемых разработок определяется повышением извлечения алюминия и кремния из сырья до 92%, увеличением на ~18% производительности руднотермических печей по выплавке рафинированного силикоалюминия и объема выпуска продукции и снижением на ~21% расхода основных шихтовых материалов. Она также обусловлена соответствующим сокращением эксплуатационных затрат (капитальных удельных вложений и трудозатрат) и на ~18% расхода электроэнергии. За счет улучшения качества сплава по содержанию примесей в ~4,5 раза снижается количество образуемых фильтр–остатков и на ~6% Al-сырца при производстве литейных сплавов.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ:

1. Баймаков А.Ю. Электротермия в производстве алюминия и алюминиево-кремниевых сплавов. / А.Ю. Баймаков, А.Н. Глазатов, М.Р. Русаков, А.М. Салтыков // Цветные металлы. 2007. № 8. С.68-73.

2. Баймаков А.Ю. Кинетика восстановления алюмосиликатов углеродом. / Баймаков А.Ю., Брусаков Ю.И., Глазатов А.Н., Микшин В.П., Занцинская И.С., Калинин М.А. // Цветные металлы. 1986. № 8. С.48-49.

3. Глазатов А.Н. Исследования по применению кокса низкотемпературного термоконтактного крекинга в электротермии алюминиево-кремниевых сплавов и кремния. / Глазатов А.Н., Брусаков Ю.И., Богданов А.П., Баймаков А.Ю., Покрывайло Л.В. // Сборник научных трудов ВАМИ: Перспективные технические решения в производстве глинозема, алюминия и кремния. 1987. С.163-167.

4. Глазатов А.Н. Изучение реакционной способности свободного и связанного углерода по отношению к оксиду алюминия при электротермическом восстановлении алюмосиликатов Глазатов А.Н., Баймаков А.Ю. // Руднотермические печи (конструкции, исследование и оптимизация технологических процессов, моделирование). Сб. трудов Всероссийской научно-технической конференции с международным участием "Электротермия–2006" под редакцией Ю.П. Удалова. СПб. 2006. С.241-250.


*Автор выражает глубокую благодарность д.т.н., гл. научн. сотр. М.Р. Русакову за помощь и соруководство, а также к.т.н. Ю.И. Брусакову за творческое участие в проведении работы.