Смекни!
smekni.com

Разработка цилиндрического редуктора для привода станции (стр. 1 из 2)

РЕФЕРАТ

Редукторы имеют наибольшее распространение благодаря их долговечности, относительной простоте, высокому КПД, большому диапазону скоростей. В данном проекте разработан цилиндрический редуктор для привода станции. В курсовом проекте произведён кинематический и эмпирический расчёт привода станции, выбран электрический двигатель для привода редуктора. Произведён расчёт параметров и нагрузок цепной и цилиндрической передач, выбрана муфта. Выбран материал для изготовления узлов и механизмов вышеуказанных передач.

Произведён расчёт входного, промежуточного и выходного валов, выбран материал для изготовления и типы подшипников. Выполнен расчёт шпоночных соединений. Был произведён выбор смазки колёс и подшипников.


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1 Кинематика и энергетика приводной станции

2 Расчет цепной передачи

3 Расчет цилиндрических передач

3.1 Расчет тихоходной ступени

3.2 Расчет быстроходной ступени

4 Расчет валов редуктора и выбор подшипников

4.1 Расчет входного вала

4.2 Расчет промежуточного вала

4.3 Расчет выходного вала

4.4 Выбор подшипников

5 Расчет шпонок

6 Подбор муфты

7 Определение размеров корпусных деталей, кожухов и рамы

8 Выбор системы смазки, смазочных материалов и уплотнений

9 Описание сборки основных узлов привода

Литература


ВВЕДЕНИЕ

Проектирование любой машины—сложная конструкторская задача, решение которой может быть найдено не только с достижением требуемого технического уровня, но и придания конструкции определенных свойств, характеризующих возможность снижения затрат материалов, энергии и труда на разработку и изготовление, ремонт и техническое обслуживание.

Задача конструктора состоит в том, что руководствуясь соображениями технической целесообразности проектируемой машины, уметь использовать инженерные методы расчета, позволяющие обеспечить достижение поставленной задачи при рациональном использовании ресурсов, выделяемых на ее создание и применение.

Курсовой проект завершает общетехнический цикл инженерной подготовки специалиста. Он является важной самостоятельной работой студента, охватывающей вопросы расчета деталей машин по критериям работоспособности, рациональном выборе материалов контактирующих пар и системы смазки с целью обеспечения максимально возможного КПД и базирующейся на знании ряда предметов : механики, теории механизмов и машин, сопротивления материалов, взаимозаменяемости и стандартизации, основ конструирования машин, технологических процессов машиностроительного производства и др.

При выполнении курсового проекта студент последовательно проходит от рационального выбора кинематической схемы механизма через многовариантность решения до претворения механического привода в графическом материале, при этом знакомясь с существующими конструкциями, приобщаясь к инженерному творчеству осмысливает взаимосвязь отдельных деталей в механизме и их функциональное предназначение.

Курсовой проект по основам конструирования машин – это технический документ, состоящий из расчетно-пояснительной записки и графического материала, в которых с необходимой полнотой приведены, в соответствии с заданием на проектирование, расчеты, схемы и чертежи.


1 КИНЕМАТИКА И ЭНЕРГЕТИКА ПРИВОДНОЙ СТАНЦИИ

Определяем потребную мощность двигателя и диапазон частоты его вращения:


Pэ= Ртобщ

зобщ= зцил зцил зм зц=0,99х0,97х0,97х0,92=0,86

Pэ=6.8/0,86=7.93 кВт

Uобщmin/max=(14,8…75)

Общее передаточное число привода

Uобщ.=Uцил.* Uцил* Uцеп.=3.55*3.15*1.7=19.01

Принимаем электродвигатель серии М160S6У3

Nэ=970мин-1, dэ=42 мм

Принимаем Uред>8, тогда

Uобщ.=Nэ/ Nт=970/50=19,4

Uт=2,8

Uб=3,55

Частоты вращения на валах:

N1= Nэ =970мин-1

N2= N1 / Uб=273,2 мин-1

N3= N2/ Uт=98 мин-1

Nt=49 мин-1

Мощности на валах:

P1=Pт/зцеп=7,39 кВт

P2= P1/зцеп зцил =7,62 кВт

P3=P2/зцеп зцил зцил =7,62 кВт

Рэл= P3/ зцеп зцил зцил змуф = 8,01кВт


2 РАСЧЕТ ЦЕПНОЙ ПЕРЕДАЧИ

[Pц]=29 МПа; n1=98 мин-1

Определяем коэффициент эксплуатации передачи

Kэ=KррKрегK0Kс=1,2х1.25х1х1,5=2.25

Назначаем числа зубьев звездочек

z1=29-2u=29-2x2,18=25

z2=z1u=25x2 =50

Определяем шаг цепи из условия износостойкости шарниров и допускаемой частоты вращения звездочки, варьируя числом рядов цепи m

15x103/n1>=Pt>=69,4(P1Kэ/z1mn1[Pц])1/3

153>=Pt>=42.7

Принимаем шаг цепи равным 44.45 мм.

Цепь ПР-44.45-17240 ;Bц=25.4 мм, dn=12.7 мм, dp=25.4 мм, разрушающая нагрузка да 17240Н, масса 1 кг цепи 7.5 кг

Межосевое расстояние:

a=(30-50)Pt=44.45*35=1555.75 мм

Число звеньев цепи:

Zц=2a/Pt+(z1+z2)/2+(((z1+z2)/2п)))2/a)Pt=112

Делительные диаметры звездочек:

d1=Pt/sin(р/z1)=31,75/sin(р/25)=354 мм

d2=Pt/sin(р/z2)=31,75/sin(р/55)=708 мм

Наружныедиаметрызвездочек:

da1=Pt(0,7+ctg(р/z1)-0,31dp/Pt)=383 мм

da2=Pt(0,7+ctg(р/z2)-0,31dp/Pt)=737 мм

Выполняем проверочные расчеты цепи на износостойкость по удельному давлению в шарнирах Pц и долговечность по числу ударов в секунду ui

Pц=P1Kэx6x104/ z1Ptn1Bц 28.39 МПа<[Pц]29 МПа

Ui=4z1n1/60zц=1.46 с-1<[ Ui]=13.05

Определяем нагрузку на вал в цепной передаче:

Fц=[ P1x6x104+(1..6)x9,8xaxqlx10-3]=4186 H

3 РАСЧЕТ ЦИЛИНДРИЧЕСКИХ ПЕРЕДАЧ

KУH=0,5; KУF=0,3

Твердость колеса принимаем равной НВ=250, шестерни НВ=300. Материал—сталь 45, термообработка—улучшение.

Для колеса:

KуH=2; KуF=0,9;

NHlim=30HB2,4=1,7x107

NFlim= 4x106

Для шестерни:

KуH=1,2; KуF=1,15;

NHlim=30HB2,4=0,224x108

NFlim= 4x106

3.1 Расчет тихоходной ступени

Расчет допускаемых напряжений:

600 ≤ [у]H1= KуHHB1(NHlim/(60 N1LhKУH))1/6= 483,3 МПа ≤ 780

576 ≤ [у]H2= KуHHB2(NHlim/(60 N2LhKУH))1/6= 535,2 Мпа ≤ 780

[у]H1=600 МПа

[у]H2=576 МПа

[у]H=588 Мпа

300 ≤ [у]F1= KуFHB1(NFlim/(60 N1LhKУF))1/6= 194 МПа ≤ 520

228 ≤ [у]F2= KуFHB2(NFlim/(60 N1LhKУF))1/6= 234 МПа ≤ 432

[у]F1=194 МПа

[у]F 2=234 МПа

шba=2,5/(u+1)=0,16

Из ряда стандартных значений принимаем шba=0,4.

Рассчитываем межосевое расстояние передачи, удовлетворяющее контактной выносливости в пределах вариации коэффициента ширины:

aw=(u+1)cos2(в+Дв)(KHP2109/ шbaN2u2[у]H2)=225 мм

Принимаем в учебных целях aw=225 мм

Определяем ширину поля зацепления:

bw=( шbaaw+0,5)=37 мм -- ширина колеса

Назначаем модуль зацепления, согласуя его со стандартным:

m=(2awcos(в+Дв))/20(u+1)=5,9 мм

Принимаем m=6 мм

Назначаем числа зубьев колес, округляя их до целого числа:

z1=2awcos(в+Дв)/m(u+1)=19,7 принимаем=20

z2= z1u=56

Определяем геометрические размеры колес:

Межосевое расстояние делительное:

a=m(z1+ z2)/ 2cosв=228 мм

Делительные диаметры:

d1=mz1=120 мм;

d2=mz2=336 мм

Внешние диаметры:

da1=mz1+ 2m(1+x)=136 мм;

da2=mz2+ 2m(1+x)=348 мм

Внутренние диаметры:

df1= da1-4,5m=109 мм;

df2= da2-4,5m=321 мм

Толщина зубьев на делительном цилиндре:

s1=m(0,5р+0,728x1)=9,4 мм;

s2= m(0,5р+0,728x2)=8,5 мм

Окружная скорость и силовые компоненты в зацеплении:

v=р d1N2/60000=1,72 м/с;

Ft=P2/v=4296,5 H;

Fr=0,364Ft=1564 H

Выполняем проверочные расчеты контактной и изгибной выносливости:

уH=1/awu(P2109KH(u+1)2 /bwd2)1/2=252 МПа;

уH=450(FtKH(u+1)/ bwd2)1/2=246 МПа;

уF1=YFS1FtKH/bwm=83 МПа;

уF2=YFS2FtKH/bwm=102 МПа;

Перегрузка либо недогрузка находятся в пределах нормы, поэтому параметры колес оставляем без изменения.

3.2 Расчет быстроходной ступени

Расчет допускаемых напряжений:

600 ≤ [у]H1= KуHHB1(NHlim/(60 N1LhKУH))1/6= 483,3 МПа ≤ 780

576 ≤ [у]H2= KуHHB2(NHlim/(60 N2LhKУH))1/6= 535,2 Мпа ≤ 780

[у]H1=600 МПа

[у]H2=576 МПа

[у]H=588 Мпа

300 ≤ [у]F1= KуFHB1(NFlim/(60 N1LhKУF))1/6= 194 МПа ≤ 520

228 ≤ [у]F2= KуFHB2(NFlim/(60 N1LhKУF))1/6= 234 МПа ≤ 432

[у]F1=194 МПа

[у]F 2=234 МПа

Из ряда стандартных значений принимаем шba=0,2. в=5◦,Дв=1є

Рассчитываем межосевое расстояние передачи, удовлетворяющее контактной выносливости в пределах вариации коэффициента ширины:

aw=(u+1)cos2(в+Дв)(KHP2109/ шbaN2u2[у]H2)=228 мм

Принимаем в учебных целях aw=120 мм

Определяем ширину поля зацепления: