Смекни!
smekni.com

Разработка электропривода лифта (стр. 7 из 7)

Макт = М1+ (-М2)= 245.25 – 196.2 =49.05Н·м.

обусловленный результирующим усилием на шкиве от разности масс загруженной кабины и противовеса.

Рисунок 14 – Механическая характеристика нагрузки.

6. Предварительная проверка двигателя по нагреву и производительности

Определяем номинальную угловую скорость вращения ротора двигателя.

Определяем номинальный момент.

Определяем приведенное ускорение.

Определяем пусковой, установившийся и тормозной моменты:

Определяем время пуска:

Определяем время торможения

Время торможения равняется времени пуска

Путь, проходимый за время пуска (торможения) рабочей машиной (стр. 11, Драчев)

Время установившегося режима движения со средней скоростью.

Рисунок 15 – Нагрузочная диаграмма при подъеме груза

Коэффициент ухудшения теплопроводности: β=0.5

При пуске и торможении скорость изменяется от 0 до ωном значит средняя скорость ωсрном/2, ωсрном/2=97,39/2=48,695 рад/сек.

Рассчитываем мощности на разных участках диаграммы.

Для проверки двигателей по нагреву применяются методы эквивалентного момента, эквивалентного тока и эквивалентной мощности.

Проверка выбранного двигателя методом эквивалентной мощности.

Эквивалентная мощность:

Мощность выбранного двигателя (9 кВт) больше рассчитанного, поэтому данный двигатель проходит по нагреву и его можно использовать в данной системе.

Сравнение пускового и максимального моментов с рассчитанными значениями.

Из расчетов можно сделать вывод, что двигатель проходит по всем параметрам.

Расчеты производились при подъеме груза, а значит если данный двигатель сможет поднять груз, то он сможет его и опустить. Данный вывод можно сделать исходя из того, что при поднятии груза mg действует против направления груза, а при опускании – по направлению. Следовательно для опускания груза понадобится меньше мощности.

7. Допустимая частота пусков

Начальное скольжение.

Номинальное скольжение Sн и критическое скольжение Sк двигателя.

Номинальное скольжение:

Критическое скольжение:

Определяем критическую угловую скорость вращения ротора двигателя:

Номинальное напряжение, конструктивный коэффициент, мощность двигателя:

Механические потери:

Коэффициент вязкого трения:

Сопротивление ротора:

Сопротивление статора:

Индуктивность статора и ротора:

Индуктивность статора и индуктивность ротора должны быть приблизительно одинаковы.

Индуктивность рассеивания статора и индуктивность рассеивания ротора:

Взаимоиндукция:

Проверка конструктивного коэффициента:

Можно принять что С1 (1.068) совпадает с выбранным ранее с1 (1.066), (небольшая разница в полученных данных произошла в результате округлений данных в расчётах), значит конструктивный коэффициент выбран правильно.

Приведенное активное сопротивление ротора:

Потери энергии в статоре:

Потери энергии при нагрузке:

Средний момент:

Потери энергии при пуске и торможении (Дж):

Потери мощности в номинальном режиме:

Допустимая частота включений:

Допустимая частота включений (по условию) Z =30, а допустимая частота включений двигателя (рассчитанная Z =530) значит по частоте включений двигатель вполне подходит.

8. Построение механической характеристики, используя формулу Клосса:

Для удобства производится также построение механической характеристики в логарифмическом масштабе.

Рисунок 16 – Механическая характеристика двигателя

Графическим способом можно найти скольжение при пусковом и установившемся моментах (что и показано на графиках). Sпуск=0,11 (11%), Sуст=0,035 (3,5%).

Построение характеристики изменения скорости при изменении момента сопротивления на валу двигателя

β – жесткость механической характеристики электропривода.

Линеаризированная механическая характеристика асинхронного двигателя.

Рисунок 17 – Линеаризированная механическая характеристика

9. Построение переходных процессов

Все полученные в ходе проектирования данные вводятся в виртуальную электронную лабораторию (математический пакет) MATLAB, и производится построение переходных процессов.

Рисунок 18 – Структурная схема ЭП

Все математические вычисления в данном курсовом проекте производились с помощью компьютерной программы (математического пакета) Mathcad 2000 Professional, а моделирование в виртуальной(компьютерной) электронной лаборатории (математическом пакете) MATLAB.


Литература

1. Львов А.П. Справочник электромонтёра. – Киев: Вища школа, Главное издательство, 1980, – 376 стр.

2. П.С. Сергеев Проектирование электрических машин. Издательство «Энергия», 1970 г.

3. М.М. Кацман. Проектирование электрических машин. М. Энергоатомиздат, 1984 г.

4. Ключев В.И.: «Теория электропривода», Москва, Энергоатомиздат, 1985 г.

5. Герман-Галкин С.Г.: «Компьютерное моделирование полупроводниковых систем в MatLab 6.0», Санкт-Петербург, Корона Принт, 2001 г.

6. Иванченко Ф.К.: «Конструкция и расчет подъемно-транспортных машин», Киев, Вища Школа, 1983 г.

7. Драчев Г.И.: «Теория электропривода», Челябинск, ЮУрГУиздат, 2002 г.

8. Борцов Ю. А, Соколовский Г.Г. Автоматизированный электропривод с упругими связями. – СПб.: Энергоатомиздат, 1992.