Смекни!
smekni.com

Расчет и проектирование червячного редуктора (стр. 5 из 6)

(11.3)

;
мм3;

;
мм3:

Определяем напряжение изгиба в сечении С-С

; (11.4)

;
;

Принимаем

.

Определяем напряжения кручения в сечении С-С

;
;

Принимаем

.

Определяем амплитудные и средние напряжения циклов перемен напряжений. По заданию вал неверсивный. Напряжения изгиба изменяются по симметричному циклу (рис.12), а напряжения кручения – по пульсирующему циклу (рис.13).

Рис.12 Цикл перемен напряжений изгиба

Рис.13 Цикл перемен напряжений кручения

Из рисунков следует:

- для перемен напряжений изгиба:

sv=sи; sм=0; sv=14МПа.

- для перемен напряжений кручения:

τvик/2; τvи=5МПа.

Определяем коэффициенты снижения выносливости в сечении С-С. Зубчатое колесо напрессовано на вал и шпонку по посадке с гарантированным натягом, тогда находим коэффициент нормальных напряжений.

έs и έτ – масштабные факторы

Учитывая примечание 2 [1, с.166 табл.8.7]

[1, с.166 табл.8.7]

;

β – коэффициент, учитывающий влияние шероховатости поверхности при высоте микронеровностей :

Rа=0,32…2,5мкм;

β =0,97…0,9; [1, с.162]

Принимаем β =0,92.

Определяем коэффициент запаса усталостной прочности по нормальным напряжениям изгиба. [1, с.162]

(11.5)

;
.

Коэффициент чувствительности материала к асимметрии цикла по касательным напряжениям ψs=0,1.

Определяем коэффициент запаса усталостной прочности по нормальным напряжениям кручения. [1, с.164]

; (11.6)

;

Определяем суммарный коэффициент запаса усталостной прочности в сечении вала С-С [1, с.162]

(11.7)

где [S]=1,5…5,5 – требуемый коэффициент запаса усталостной прочности [1, с.162]

Вывод: Расчетный коэффициент запаса усталостной прочности в пределах нормы, поэтому конструкцию вала сохраняем.

12 Расчет подшипников на долговечность

12.1 Расчет подшипников червяка на долговечность

Исходные данные

n2=652мин-1;

dп3=30мм;

RАy=2526Н;

RАх=512Н;

RBy=650Н;

RВх=1607Н;

Н.

Определяем радиальные нагрузки, действующие на подшипники

; (12.1)

;

Здесь подшипник 2 – это опора А в сторону которой действует осевая сила Fа (рис.9).

;

;

Назначаем тип подшипника, определив отношение осевой силы к радиальной силе того подшипника, который ее воспринимает (здесь подшипник 2)

;

;

Так как соотношение больше 0,35, то назначаем роликовый конический однорядный подшипник средней серии по dп3=30мм.

Подшипник № 7306, у которого:

Dn2=72мм;

Вn2=21мм;

С0=40кН – статическая грузоподъемность;

С=29,9кН – динамическая грузоподъемность

е=0,34 – коэффициент осевого нагружения;

У=1,78 – коэффициент при осевой нагрузке [1,c.402, табл.П7].

Определяем коэффициент Х при радиальной нагрузке [1,c.212, табл.9.18] в зависимости от отношения

;

где V – коэффициент вращения, при вращении внутреннего кольца V=1.

Тогда Х=0,4.

Изображаем схему нагружения подшипников. Подшипники устанавливаем враспор.

Рис.14 Схема нагружения вала-червяка

Определяем осевые составляющие от радиальных нагрузок

S=0,83×e×Fr[1,c.216]

S1=0,83×0,34×1733; S1=489Н;

S2=0,83×0,34×2577; S2=727Н.

Определяем осевые нагрузки, действующие на подшипники.

FaI=S1;

FaII=S2 +FaI;

FaI=489Н;

FaII=489+723; FaII=1216Н.

Определяем эквивалентную нагрузку наиболее нагруженного подшипника II

Fэ2=(Х×V×Fr2+У×FaII)×Kd×Kτ;

где Kd - коэффициент безопасности;

Kd =1,3…1,5 [1,c.214, табл.9.19];

принимаем Kd =1,5;

Kτ – температурный коэффициент;

Kτ =1 (до 100ºС) [1,c.214, табл.9.20];

Fэ2=(0,4×1×2577+1,78×1216)×1,5×1; Fэ2=3195Н=3,2кН

Определяем номинальную долговечность роликовых подшипников в часах

[1,c.211]; (12.2)

.

Подставляем в формулу (12.2):

;
ч.

По заданию долговечность привода Lhmin=10000ч.

В нашем случае Lh> Lhmin, принимаем окончательно для червяка подшипник 7306.

12.1 Расчет подшипников тихоходного вала на долговечность

Исходные данные

n2=65,2мин-1;

dп3=60мм;

RАy=1719Н;

RАх=10284Н;

RBy=1457Н;

RВх=7343Н;

Н.

Определяем радиальные нагрузки, действующие на подшипники (12.1)

;

Здесь подшипник 2 – это опора А в сторону которой действует осевая сила Fа (рис.10).

;

;

Назначаем тип подшипника, определив отношение осевой силы к радиальной силе того подшипника, который ее воспринимает (здесь подшипник 2)

;