регистрация / вход

Расчёт цикла паротурбинной установки

Проведение расчета по обратимому циклу Ренкина параметров воды и пара (сухого, перегретого) в характерных точках цикла, их удельных расходов на выработку электроэнергии, количества подведенного, отведенного тепла, термического КПД паротурбинной установки.

ФГОУ ВПО

Костромская Государственная Сельскохозяйственная Академия

Кафедра: "Безопасность жизнедеятельности и теплоэнергетики"

Расчетно-графическая работа

"Расчёт цикла паротурбинной установки"

Выполнил: студент 2 курса 5

группы факультета электрификации и

автоматизации сельского хозяйства

Принял: Шабалина Л. Н.

Кострома 2004


Введение

В современной теплоэнергетике широко используются паросиловые установки. Наибольшее распространение получили стационарные паротурбинные установки (ПТУ) тепловых электрических станций (ТЭС), на долю которых приходится более 80% вырабатываемой в стране электроэнергии.

Эти установки работают по циклу, предложенному шотландским инженером и физиком Ренкиным. В качестве рабочего тела в цикле используют водяной пар, который в различных элементах схемы ПТУ изменяет своё состояние вплоть до полной конденсации. В области близкой к сжижению свойства паров сильно отличаются от идеального газа, что исключает возможность применения уравнений и законов идеальных газов для паров. В этом случае процессы и циклы рассчитывают при помощи таблиц и диаграмм водяного пара.

Целью данной работы является более глубокое самостоятельное изучение студентами раздела "Цикла паровых установок".

Студенты должны овладеть навыком работы с hs – диаграммой и таблицей свойств водяного пара, научится определять по ним параметры пара различного состояния, уметь исследовать и анализировать циклы с помощью диаграмм.


Задание

Для паротурбинной установки (ПТУ), работающей по обратимому (теоретическому) циклу Ренкина, расчетом определить:

- параметры воды и пара в характерных точках цикла,

- количества тепла, подведенного в цикле,

- количество отведенного тепла в цикле

- работу, произведенную паром в турбине

- работу, затраченную на привод питательного насоса,

- работу, совершенную в цикле

- термический КПД цикла,

- теоретические удельные расходы пара и тепла на выработку электроэнергии.

Расчет выполнить при заданных параметрах острого пара в перед турбиной и одинаковом значении давления пара в конденсаторе Р2 для четырех случаев:

1) ПТУ работает на сухом насыщенном паре с начальным давление Р1;

2) ПТУ работает на перегретом паре с начальными параметрами Р1, t1

3) ПТУ работает на перегретом паре начальным давлением Р1 и t1, но при этом используется вторичный перегрев пара до температуры tn при давлении Рn.

4) ПТУ работает на перегретом паре с давлением P1 и t1 , но при этом используется регенерация с одним отбором пара при давлении отбора Pотб .

Таблица 1Исходные данные

Начальные параметры

пара

Параметры пара после

вторичного перегрева

Давление отбора

Pотб , МПа

Конечное давление пара

Р2 , кПа

Давление

Р1 , МПа

Температура

t1 , ºC

Давление

Pn , МПа

Температура

tn , ºC

13 490 3.3 510 0.38 4.5

I. ПТУ работает на сухом насыщенном паре

Структурная схема ПТУ:

где

ПГ - парогенераторПТ - паровая турбинаЭГ - электрогенераторК - конденсаторПН - питательный насос

Процесс парообразование в PV, hS и TS диаграммах, выглядит следующим образом:

а) в Pv-диаграмме, б) в Ts-диаграмме, в) в hs-диаграмме;

1-2 — адиабатное расширение пара в турбине;

2-3 — изобарно-изотермическая конденсация влажного пара в конденсаторе (Р2 - const, t2 = const);

3 – 3’— адиабатное сжатие воды в насосе, т.к. вода практически не сжимается, этот процесс можно считать и изохорным (данный процесс показан только на Pv - диаграмме);

3(3’) -4 — изобарный процесс подогрева воды в экономайзере парогенератора (P1 = const);

4-1 — изобарно-изотермический процесс парообразования в парогенераторе (P1 = const, t1 = const).

Таблица 2 Параметры в характерных точках цикла ПТУ при работе на сухом насыщенном паре

Точки цикла

Р,

МПа

t,

° C

h,

кДж/кг

ν,

S,

кДж/кг*К

Х

1 13 330.86 2662 0.012 5.39 1
2 0.0045 31 1645.7 19.43 5.39 0.624
3 0.0045 31 130 0.001 0.45 0
4 13 330.86 1532 0.0015 3.56 0

Параметры определяются по hs – диаграммам и таблицам свойств водяного пара

Удельная теплота, затраченная на образование 1 кг пара в турбине:

кДж/кг

Удельный отвод теплоты в конденсаторе:

кДж/кг

Удельная полезная работа, совершаемая паром в турбине, в адиабатном процессе расширения определяется величиной располагаемого теплового перепада Hp :

кДж/кг


Если пренебречь работой, затраченной на сжатие в насосе, будем считать, что полученная в цикле работа равна работе, совершаемой паром в турбине:

кДж/кг

Термический КПД цикла Ренкина :

Теоретический удельный расход пара d0 необходимый для выработки одного кВт*ч электроэнергии:

кг/( кВт*ч)

Теоретический удельный расход тепла q0 , необходимый для выработки одного кВт*ч:

кДж/( кВт*ч)


II. ПТУ работает на перегретом паре

Структурная схема ПТУ

Где

ПГ - парогенератор

ПП - пароперегреватель

ПТ - паровая турбина

ЭГ - электрогенератор

К - конденсатор

ПН - питательный насос

Процесс парообразование в PV, hS и TS диаграммах, выглядит следующим образом:

Параметры в характерных точках цикла ПТУ при работе на перегретом паре


Таблица 3

Точки цикла

Р,

МПа

t,

° C

h,

кДж/кг

ν,

S,

кДж/кг*К

Х

1 13 490 3309 0.024 6.4 1
2 0.0045 31 1940.8 23.2 6.4 0.746
3 0.0045 31 130 0.001 0.45 0
4 13 330.86 1532 0.0015 3.56 0
5 13 330.86 2662 0.012 5.39 1

Параметры определяются по hs – диаграммам и таблицам свойств водяного пара

Удельная теплота, затраченная на образование 1 кг пара в турбине:

кДж/кг

Удельный отвод теплоты в конденсаторе:

кДж/кг

Удельная полезная работа, совершаемая паром в турбине, в адиабатном процессе расширения:

кДж/кг

Работf, совершаемая паром в турбине:

кДж/кг

Термический КПД цикла Ренкина:


Теоретический удельный расход пара d0 необходимый для выработки одного кВт*ч электроэнергии:

кг/( кВт*ч)

Теоретический удельный расход тепла q0 , необходимый для выработки одного кВт*ч:

кДж/( кВт*ч)

III. ПТУ работает на перегретом паре с вторичным перегревом

В этом цикле используется многоступенчатую турбину, состоящую из цилиндра высокого давления и нескольких низкого давления. Пар из парового котла направляется сначала в цилиндр высокого давления, где расширяясь, совершает работу. После этого пар возвращается в паровой котел (промежуточный пароперегреватель), где осушается и нагревается до более высокой температуры (но уже при более низком и постоянном далении) и поступает в цилиндр низкого давления, где, продолжая расширяться, снова совершает работу.


Процесс парообразование в PV, hS и TS диаграммах, выглядит следующим образом:

Таблица 4 Параметры в характерных точках цикла ПТУ при работе на перегретом паре насыщенном паре с вторичным перегревом

Точки цикла

Р,

МПа

t,

° C

h,

кДж/кг

ν,

S,

кДж/кг*К

Х

1 13 490 3309 0.024 6.4 1
а 3.3 283.14 2939.6 0.07 6.4 1
b 3.3 510 3476.3 0.0107 7.2 1
2 0.0045 31 2188.1 26.4 7.2 0.85
3 0.0045 31 130 0.001 0.45 0
4 13 330.86 1532 0.0015 3.56 0
5 13 330.86 2662 0.012 5.39 1

Параметры определяются по hs – диаграммам и таблицам свойств водяного пара

Удельная теплота, затраченная на образование 1 кг пара в турбине:

кДж/кг

Удельный отвод теплоты в конденсаторе:

кДж/кг


Удельная полезная работа, совершаемая паром в турбине, в адиабатном процессе расширения:

кДж/кг

Работа, совершаемая паром в турбине:

кДж/кг

Термический КПД цикла Ренкина :

Теоретический удельный расход пара d0 необходимый для выработки одного кВт*ч электроэнергии:

кг/( кВт*ч)

Теоретический удельный расход тепла q0 , необходимый для выработки одного кВт*ч:

кДж/( кВт*ч)

IV. ПТУ работает на перегретом паре, при этом используется регенерация с одним отбором пара

В данном цикле используется отработавший пар для подогрева воды, полученной после конденсации основного парового потока. При этом конденсат греющего пара смешивается с основным потоком питательной воды

Процесс парообразование в PV, hS и TS диаграммах, выглядит следующим образом:

Таблица 4 Параметры в характерных точках цикла ПТУ при работе на перегретом паре насыщенном паре с вторичным перегревом

Точки цикла

Р,

МПа

t,

° C

h,

кДж/кг

ν,

S,

кДж/кг*К

Х

1 13 490 3309 0.024 6.4 1
а 0.38 141.77 2525 0.437 6.4 0.9
b 0.38 141.77 596.8 0.0011 1.76 0
2 0.0045 31 1940.8 23.2 6.4 0.746
3 0.0045 31 130 0.001 0.45 0
4 13 330.86 1532 0.0015 3.56 0
5 13 330.86 2662 0.012 5.39 1

Параметры определяются по hs – диаграммам и таблицам свойств водяного пара

Доля отобранного пара:

кг/кг

где ha – энтальпия пара, отбираемого из турбины;

hb – энтальпия конденсата при давлении отбора.

Полезная работа в регенеративном цикле:

кДж/кг

Количество подведенной теплоты в данном цикле:

кДж/кг

Удельный отвод теплоты в конденсаторе:

кДж/кг

Работе, совершаемая паром в турбине:

кДж/кг

Термический КПД цикла Ренкина :

Теоретический удельный расход пара d0 необходимый для выработки одного кВт*ч электроэнергии:

кг/( кВт*ч)

Теоретический удельный расход тепла q0 , необходимый для выработки одного кВт*ч:


кДж/( кВт*ч)

Таблица 5 Результаты расчетов

Параметрыцикла Цикл паротурбинной установки
на сухом насыщенном паре

На перегретом

паре

с вторичным

перегревом пара

с регенеративным отбором
Количество подведенной теплоты q1 , кДж/кг 2532 3179 3715.7 2712.2
Количество отведенной теплоты q2 , кДж/кг 1515.7 1810.8 2058.8 1810.8
Полученная работа в цикле lц , кДж/кг 1016.3 1368.2 1368.8 1257.2
Теоретический удельный расход пара d0 , кг/кВт*ч 3.54 2.63 2.17 2.86
Теоретический удельный расход тепла q0, кДж/ кВт*ч 8969 8361 8063.1 7757
Термический КПД цикла, ηT 0.4 0.43 0.45 0.46

Вывод

Рассчитав паротурбинную установку, работающую по циклу Ренкина, видно, что термический кпд таких установок очень низок (около 40%). Но так как термический вид энергии очень распространен, необходимо искать методы повышения кпд ПТУ. В данной работе мы увидели три способа повышения термического кпд. Комбинируя эти методы можно повысить кпд на 10-20%, что делает данный способ получения энергии более перспективным.

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ  [можно без регистрации]

Ваше имя:

Комментарий