Смекни!
smekni.com

Теплоизоляция в криогенной технике (стр. 5 из 5)

В связи с этим в крупных установках в последние годы стали применять двустенный кожух (так называемая камерная изоляция). Основные низкотемпературные аппараты размещаются во внутреннем кожухе (холодной камере), свободном от изоляции. Пространство между наружным кожухом и холодной камерой заполняется изоляционным материалом.


При проектировании холодной камеры необходимо учесть наличие температурных деформаций, возникающих при ее охлаждении от температуры окружающей среды до примерно —160° С.

В отечественных установках как внутренний, так и наружный кожух изготовляются из стального листа толщиной 4 мм. Между ними устанавливаются распорки, конструкция которых показана на рис, 104, а. Для уменьшения притока тепла труба 1 выполнена из стали Х18Н9Т и изолируется от стенок деревянными подушками. Толщину слоя изоляции принимают равной 500—600 мм.

В кожухе оставляют специальные люки для прохода, закрываемые отдельными щитами.

На рис. 104, б показано устройство двустенного кожуха установки на 5000 м*/ч кислорода фирмы Линде (Германия). К тавровым балкам крепятся специальные направляющие элементы, на которые навешиваются алюминиевые листы наподобие кровельной черепицы. Такое устройство позволяет осуществлять местное удаление минеральной ваты, после того, как будет вынуто несколько алюминиевых листов.

Применение двустенного кожуха (рис. 105) позволяет уменьшить массу изоляции приблизительно в 2 раза по сравнению с обычными конструкциями. Это приводит к значительному сокращению пускового периода. Приток тепла через изоляцию несколько увеличивается.

Приток тепла через изоляцию установок, работающих на температурном уровне 80-90° К и изолированных минеральной ватой, может быть оценен без учета увлажнения и конвективных токов в изоляции

По данным испытаний двух установок производительностью 5000 м3/ч кислорода приток тепла в установке со «сплошной» изоляцией находился в пределах 10,1—17,5 вт/м2, а в установке с двустенным кожухом. 9,9—27,5 вт/м2. По данным обследования нескольких установок КТ-3600 и БР-5 приток тепла составил на установках первого типа 35—45 вт/м2, а .второго типа 30—35 вт/м2.

Для удобства расчетов приток тепла через изоляцию кислородных установок принято относить .к 'количеству перерабатываемого воздуха. В частности, приведенные выше цифры соответствуют 1,7—2,0 кДж/м3 перерабатываемого воздуха. Значительное количество тепла передается также по трубопроводам, вентилям и другой арматуре. Принимаемая для расчета величина .притока тепла из окружающей среды отчасти учитывает и не поддающиеся точному учету утечки холодного газа через неплотности. Эта величина составляет 8,4 кдж/м3 и и более для установок, перерабатывающих воздух в количестве до 2000 м3/ч; от 4,6 до 7,5 кдж/м3 в установках, перерабатывающих 5000—10 000 м3/ч; от 3,3 до 5,4 кдж/м3 в установках, перерабатывающих от 10000 до 30000 м3/ч. В установках, перерабатывающих от 30 000 до 100 000 м3/ч приток тепла через изоляцию находится в пределах 2,5—4,2 кдж/м3.

Даже в установках с двустенным кожухом масса изоляции весьма велика. Например, установка БР-2 производительностью 35 000 м3/ч кислорода имеет массу вместе с изоляцией 1230 т, из которых масса изоляции составляет 540 т или 44%. Резкого снижения массы изоляции можно достичь путем замены минеральной ваты на вспученный перлитовый песок, объемная масса которого в 3—4 раза меньше. При этом значительно улучшатся условия труда при загрузке изоляции и уменьшится приток тепла через изоляцию.

В установках для ожижения водорода с насыпной изоляцией воздух, содержащийся в изоляционном объеме, будет конденсироваться в зоне изоляции, имеющей температуру ниже 80° К. Поэтому изоляцию заполняют водородом' или гелием под избыточным давлением 50—100 н/м2. Коэффициент теплопроводности изоляции в этом случае в 3—5 раз 'выше, чем у изоляции, заполненной воздухом. Поэтому для уменьшения общей толщины изоляции ее разделяют герметичной перегородкой на два слоя, из которых водородом заполняют лишь слой, прилегающий к холодной аппаратуре. Это позволяет уменьшить толщину изоляции примерно в 3 раза, не увеличивая теплопритока через нее.

Расход дорогостоящего низкотемпературного холода уровня 20° К может быть уменьшен путем установки экрана, охлаждаемого жидким азотом. При заданной общей толщине изоляции 6 может быть найдено теоретически оптимальное место расположения экрана.

Обозначим через x толщину изоляции между экраном и поверхностью холодного аппарата,

- температуры наружного кожуха, экрана и холодного аппарата,
- теплопроводность изоляции до и после экрана.

Тепло, проникающее через изоляцию, компенсируется холодильным циклом на уровнях

. для компенсации потерь холода на уровне
потребуется работа
, где
- термодинамическтй КПД холодильного цикла на уровне
. Соответственно, для компенсации потерь холода
на уровне
будет необходима работа
.

Учитывая, что

и
, находим:

Эта сумма должна быть минимальной. Приравнивая нулю первую производную, получаем:

Из этого уравнения можно найти х. Если положить

, то получим х=0,7 и

Дальнейшего снижения потерь холода достигают путем применения вакуумных видов изоляции.

В конструкциях с вакуумными видами изоляции граничные стенки должны иметь сравнительно большую толщину, обеспечивающую устойчивость от смятия под воздействием атмосферного давления. М.И. Блат, С.Е. Бреслер и Ю.Н. Рябинин предложили, использовать изоляционный материал для поддержания стенок и восприятия нагрузки от атмосферного давления. Промышленные конструкции тонкостенных панелей с вакуумными видами изоляции были разработаны лишь недавно. В качестве изоляционного материала используется стекловолокно или перлит. Толщина вакуумированного стекловолокнистого мата уменьшается под воздействием атмосферного давления примерно на 2%, В дальнейшем толщина постепенно стабилизируется, уменьшаясь еще на 2% через 1000 ч. Коэффициент теплопроводности мата почти не изменяется при обжатии.

Панель со стекловолокнистым матом откачивается 30 мин при 300° С, что обеспечивает начальное давление около 1 н/м2. Вакуум имеет тенденцию к повышению и сохраняется по данным испытаний 10 лет. Средняя толщина панелей составляет 10—12 мм. В панелях размером 1 X 1 м тепловой поток через края, выполненные из нержавеющей стали толщиной 0,25 мм, примерно в 2 раза меньше теплового потока через изоляцию панели. Панели площадью 0,3 м2 и больше эквивалентны по изолирующему действию мату такой же площади из стекловолокна плотностью 40 кг/м2 и толщиной 90—100 мм.

В качестве порошка для заполнения панелей был выбран перлит. Испытания показали, что наименьшей сжимаемостью обладает крупнозернистый перлит, для которого сжатие под атмосферным давлением составляет около 10% по объему.

Стенки панели изготовляют из листовой холоднокатаной стали толщиной 0,7 мм. Противоположные стенки панели соединяют по краям проставками U-образной формы из нержавеющей стали с целью уменьшения потока тепла между теплой и холодной стенками. Проставка приваривается между двумя гладкими стенками и может образовывать закругленные углы.

Желательно, чтобы в панели было как можно меньше отверстий, для чего был разработан способ ввода порошка в панель через одно небольшое отверстие. Устройство представляет собой эжектор, в который потоком воздуха высокого давления порошок засасывается и затем подается в панель. Трубка, по которой идет взвешенный в воздухе порошок, окружена наружной концентрической трубкой, по которой возвращается отработанный газ. Давление внутри панели регулируется путем изменения скорости выходящего потока. Во время процесса заполнения панель должна вибрировать, чтобы облегчить заполнение порошком всех углов. При заполнении в панель вводится небольшой избыток порошка; в процессе вакуумирования порошок сжимается и панель сглаживается.

Примером применения описанных панелей может служить холодильник с внутренним объемом 550 дм3 и изоляцией толщиной 16 мм. Вместо использования в холодильнике отдельных панелей его корпус выполнен из внешней и внутренней оболочек, которые соединяются у края, обращенного к дверце. Дверца изготовлена из отдельной панели.

Согласно результатам испытаний ряда панелей увеличение давления в течение трех лет от исходного давления 2,7 н/м2 составляло от 24,6 до 66,6 н/м2.