Смекни!
smekni.com

Технологический процесс изготовления шпинделя 4-хшпиндельной комбинированной головки (стр. 3 из 20)

3. Подача незначительно влияет на высоту микронеровностей, т.к подача не влияет на толщину слоев, срезаемых боковыми кромками профилирующих зубьев. Поэтому условия образования нароста будут почти одинаковыми как при работе с малыми подачами, так и со сравнительно большими, и только повышенная вибрация, вызванная изменением силы резания, несколько увеличивает высоту микронеровностей.

4. Высота микронеровностей почти не зависит от схемы резания. Величина микронеровностей поверхности зубьев, нарезанных фрезами с прогрессивной схемой, не больше, чем стандартными, что объясняется во-первых лучшими условиями стружкообразования, во-вторых, меньшим значением амплитуды колебания силы резания и, следовательно, меньшими вибрациями, возникающими при работе фрез с прогрессивной схемой резания.

5. Величина микронеровностей при попутном фрезеровании значительно меньше, чем при встречном. Это действительно для всех схем резания. При работе фрез с прогрессивной схемой уменьшение высоты шероховатости с изменением направления подачи не так велико. Эти закономерности можно объяснить следующими причинами:

а) при попутном фрезеровании зубья фрез со всеми схемами резания срезают более тонкие слои, чем при встречном; следовательно, нарост будет меньше и шероховатость поверхности ниже;

б) при работе со встречной подачей большая часть зубьев стандартных фрез срезает П-образные стружки, а с попутной – Г-образные; при резании двух боковых и вершинной кромок резца срезаемые слои деформируются значительно сильнее, чем при работе только боковой и вершинной кромкой (рис. 2.1, 2.2) в связи с меньшей степенью пластической деформации слоев, срезаемых при попутном фрезеровании, нарост должен быть меньше; при работе фрез с прогрессивной схемой резания как со встречной, так и при попутной подачами резание сходно со свободным, и направление подачи не оказывает такого влияния на деформацию срезаемых слоев, как при зубонарезании стандартными фрезами; поэтому направление подачи больше влияет на высоту микронеровностей при резании стандартными фрезами, чем фрезами с прогрессивной схемой.

в) рост ширины срезаемого слоя по-разному влияет на интенсивность их деформации при образовании Г- и П-образных стружек; при образовании Г-образных с ростом ширины слоя, срезаемого боковой кромкой, деформация слоя снижается (рис. 2.1), при образовании О-образных стружек деформация слоев, срезаемых боковыми кромками, наоборот повышается (рис.2.2); поэтому с увеличение высоты обрабатываемого зуба детали, нарезанных стандартными фрезами, направление подачи оказывает более сильное влияние на высоту микронеровностей; такая закономерность отсутствует при работе фрез с прогрессивной схемой резания, т.к. кромки их зубьев как при встречной, так и при попутной подаче работают в одинаковых условиях, близких к свободному резанию.

Рис.2.1 Зависимость высоты неровностей профиля Rzот подачи и высоты нарезаемого шлица при черновом фрезеровании


Рис.2.2. Кривые распределения интенсивность деформации слоев, срезаемых боковой и вершинной кромками режущего инструмента

6. Для снижения припуска на последующую обработку черновое фрезерование следует вести с попутной подачей. Последнее особенно целесообразно при нарезании зубьев со значительной высотой стандартными фрезами.

7. Применение фрез с вершинонагруженной и прогрессивной схемами резания вместо стандартных не вызовет увеличения припуска на дальнейшую обработку.

2.2 Анализ схемы резания процесса шлицешлифования

Для удовлетворения всё повышающихся требований к качеству и производительности при изготовлении шлицев необходимы поиск и реализация новых технологических решений для операций черновой и чистовой обработки базовых поверхностей и самих шлицев.

Не менее важны вопросы повышения производительности и точности обработки шлицев. Цель новых прогрессивных решений при шлицешлифова-нии – повышение стойкости абразивного инструмента и производительности процесса обработки.

Рассмотрим специальные наладки станков с тарельчатыми кругами, позволяющие повысить производительность обработки, уменьшить возникающие погрешности профиля зуба, а при использовании безобкатного способа шлифования даже расширить технологические возможности оборудования.

Отечественные зубошлифовальные станки с тарельчатыми кругами моделей 5851, 5А851,5853, а также аналогичные станки швейцарской фирмы Maag относятся к станкам класса А, т. е. к особо высокоточным. По точности они уступают лишь станкам с плоским кругом моделей МШ-350, 5А893 и аналогичным им станкам фирмы "Хурт" (ФРГ).

Однако в станках с плоским кругом отсутствует возможность продольного перемещения обрабатываемого изделия относительно шлифовального круга, из-за чего область применения таких станков ограничена изделиями с небольшой шириной венца (b£50 мм). Кроме того, станки с тарельчатыми кругами имеют заметно большие возможности для шлифования шлицев с модифицированной поверхностью (срез головки или ножки, продольная бочкообразность заданной формы и т. п.). Поэтому, по мнению автора, прекращение выпуска таких станков — временное явление, в ближайшем будущем это оборудование будет востребовано теми отраслями машиностроения, где необходима высокоточная обработка закаленных зубчатых передач с шириной венца более 50…60 мм (авиационная промышленность, судостроение, прецизионное станкостроение и т. д.).

Существующая техническая документация к названным станкам подробно описывает стандартные наладки, при которых плоскости режущих кромок тарельчатых кругов располагают вертикально и параллельно друг другу на расстоянии длины общей нормали (угол шлифования aш = 0) или наклоняют вместе с суппортами на угол aш, равный углу исходного контура обрабатываемого изделия.

В статье рассмотрены специальные наладки станков с тарельчатыми кругами, которые позволяют в одних случаях повысить производительность обработки, в других — уменьшить возникающие погрешности профиля зуба, а иногда, используя сравнительно новый безобкатный способ шлифования [1] косых зубьев, даже расширить технологические возможности оборудования, о чем подробно сказано ниже.

В технической литературе этот вопрос освещен явно недостаточно. В работе [2] введено понятие производственной окружности, которая при специальных наладках не совпадает с делительной окружностью шлифуемого изделия, вследствие чего утлы шлифования и исходного контура не равны друг другу (aш¹a). Однако это важное теоретическое положение автор работы [2] не довел до практической реализации: в ней отсутствуют формулы настройки станка при aш¹a. В работе [3] ничего не говорится о наладке станков с тарельчатыми кругами, а в работе [4] даже неправильно изображено взаимное расположение кругов при 20-градусном шлифовании (при наклоне суппортов).

На станках старых конструкций (модели 5851, MaagHSS 30, MaagHSS 60/80) зубчатые колеса можно шлифовать как при наклонном расположении осей шлифовальных кругов ("угловой" метод шлифования), так и при горизонтальном (0-градусный метод шлифования). На станках последних моделей (5А851, MaagHSS 80 и др.) возможно только более перспективное 0-градусное шлифование.

Сначала рассмотрим расположение кругов при наклонном положении суппортов, т. е. при "угловом" методе шлифования. Обычно в этом случае круги располагают в одной впадине, суппорты с кругами наклоняют на угол аш, равный углу исходного контура а шлифуемого изделия (aш = a), а колонку и линейку в механизме спиралеобразования поворачивают на угол bш, равный углу наклона b косого зуба (bш = b). Если круги расположить в одной впадине не удается (например, при шлифовании мелкомодульных зубчатых колес или колес среднего модуля, но с большим положительным коэффициентом смещения), их располагают в соседних впадинах, сохраняя и угол наклона суппортов, и угол поворота колонки. Диаметр обкатного ролика (сектора) dpв этом случае должен быть равен диаметру делительной окружности шлифуемого зубчатого колеса за вычетом толщины обкатных лент. Таким образом, при стандартной наладке для каждого обрабатываемого изделия нужен свой обкатный ролик.

Однако, используя нестандартные приемы наладки станка, иногда удается не изготовлять новый обкатный ролик (сектор), а использовать ранее изготовленный. Заметим, что в случае шлифования косых зубьев не только угол наклона суппортов должен отличаться от угла исходного контура обрабатываемого изделия, но и угол поворота колонки с кругами, а также угол bш поворота линейки в механизме спиралеобразования должен отличаться от угла b наклона зуба, т. е. bш¹b. В этом случае, исходя из равенства хода винтовой поверхности на цилиндре любого диаметра, по одной из формул получим:

Или

(2.1)

где dр – диаметр имеющегося обкатного ролика, мм;

d – толщина обкатных лент, мм

b – угол наклона зуба на делительной окружности, мм ;

m и z – модуль (мм) и число зубьев шлифуемого изделия соответственно.

При шлифовании прямозубых зубьев нужно определять только один элемент специальной наладки — угол наклона суппортов. Формула для вычисления aш значительно упрощается

aШ = arcos (cosasinb / sinbШ), (2.2)


На Московском заводе шлифовальных станков, когда это предприятие нормально функционировало, при выполнении разовых заказов неоднократно успешно применяли описанный прием наладки станка, причем диаметр установленного на станок ролика обычно отличался от традиционного на 1…6 мм.