Смекни!
smekni.com

Технология обработки конструкционных материалов (стр. 15 из 35)

Бобышки, приливы и другие выступающие части необходимо конструировать так, чтобы не затруднять извлечение модели из формы (рис.8.7). При изготовлении нетехнологичных отливок требуется применение в моделях отъемных частей или стержней, что усложняет процесс формовки.

Рис.8.7. Конструкции литой детали: а, б - нетехнологичные,; в, г - технологичные

Внутренние полости сложных отливок необходимо изготавливать с минимальным числом стержней. На рис.8.8 представлены варианты конструкции литой детали: технологичной (б) и нетехнологичной (а).


Рис.8.8. Конструкция литой детали: а - нетехнологичная,; б - технологичная

В конструкции должно быть достаточное число окон для прочного крепления стержней в форме, удаления газов из стержня и удобства выбивки стержней из отливки.

В конструкции детали следует избегать пазов и узких полостей, при выполнении которых возможно образование песчаных раковин, из-за разрушения стержней потоком расплавленного металла (рис.8.9).

Рис.8.9. Устранение пазов в конструкции литой детали

Минимальные диаметры отверстий в отливках выбираются в зависимости от материала и толщины стенки.

Основные положения к выбору способа литья

При выборе способа литья для получения заготовки в первую очередь должен быть рассмотрен вопрос экономии металла. Металлоемкость можно снизить конструктивными и технологическими мероприятиями. Часто закладывается неоправданно большой запас прочности деталей, работающих при незначительных нагрузках. За счет изменения конструкции, образования выемок, изменения толщины стенок, применения коробчатых или тавровых сечений можно достичь значительной экономии металла. При анализе требований, предъявляемых в процессе эксплуатации, возможна замена дорогостоящих материалов.

При выборе способа получения отливки необходимо оценить все положительные и отрицательные стороны возможных технологических процессов, провести сравнительный анализ.

При сравнении различных способов литья необходимо учитывать различные факторы.

Технологические свойства сплава. При пониженной жидкотекучести нежелательно применять литье в металлические формы. При высокой склонности к усадке нежелательно применять литье в металлические формы, так как возможно образование трещин из-за низкой податливости формы, а также литье под давлением из-за сложности пресс-формы.

Возможности способов для получения отливок без дефектов литейного происхождения и для обеспечения равномерной мелкозернистой структуры, высоких механических свойств.

Технологичность конструкции детали применительно к каждому рассматриваемому способу. Сложные по конфигурации отливки получают литьем под давлением, по выплавляемым моделям, в песчаных формах. Литьем в кокиль получают отливки с простой наружной конфигурацией, а центробежным литьем - отливки типа тел вращения. Наиболее тонкостенные отливки получают литьем по выплавляемым моделям и литьем под давлением. Специальные способы литья применяют для получения мелких и средних отливок, при литье в песчаные формы габариты и масса отливок не ограничены.

Следует выбирать способ, обеспечивающий заданную точность размеров и шероховатость поверхности. Высокое качество поверхности дает возможность сохранить при механической обработке литейную корку, имеющую повышенную твердость и износостойкость, снизить себестоимость готовых деталей за счет экономии металла.

Специальные способы литья целесообразно применять в крупносерийном и массовом производствах

Необходимо учитывать возможности имеющегося оборудования, уровень литейной технологии и технологии механической обработки.

Наиболее точным показателем, определяющим эффективность применения того или иного способа, является себестоимость.

ЛЕКЦИЯ 9

Технология обработки давлением. Общие сведения

Обработкой давлением называются процессы получения заготовок или деталей машин силовым воздействием инструмента на исходную заготовку из исходного материала.

Пластическое деформирование при обработке давлением, состоящее в преобразовании заготовки простой формы в деталь более сложной формы того же объема, относится к малоотходной технологии.

Обработкой давлением получают не только заданную форму и размеры, но и обеспечивают требуемое качество металла, надежность работы изделия.

Высокая производительность обработки давлением, низкая себестоимость и высокое качество продукции привели к широкому применению этих процессов.

Классификация процессов обработки давлением

Пластическое деформирование в обработке металлов давлением осуществляется при различных схемах напряженного и деформированного состояний, при этом исходная заготовка может быть объемным телом, прутком, листом.

По назначению процессы обработки металлов давлением группируют следующим образом:

для получения изделий постоянного поперечного сечения по длине (прутков, проволоки, лент, листов), применяемых в строительных конструкциях или в качестве заготовок для последующего изготовления деталей - прокатка, волочение, прессование;

для получения деталей или заготовок, имеющих формы и размеры, приближенные к размерам и формам готовых деталей, требующих механической обработки для придания им окончательных размеров и заданного качества поверхности - ковка, штамповка.

Основными схемами деформирования объемной заготовки являются:

сжатие между плоскостями инструмента - ковка;

ротационное обжатие вращающимися валками - прокатка;

затекание металла в полость инструмента - штамповка;

выдавливание металла из полости инструмента - прессование;

вытягивание металла из полости инструмента - волочение.

Характер пластической деформации зависит от соотношения процессов упрочнения и разупрочнения. Губкиным С.И. предложено различать виды деформации и, соответственно, виды обработки давлением.

Горячая деформация - деформация, после которой металл не получает упрочнения. Рекристаллизация успевает пройти полностью, новые равноосные зерна полностью заменяют деформированные зерна, искажения кристаллической решетки отсутствуют. Деформация имеет место при температурах выше температуры начала рекристаллизации.

Неполная горячая деформация характеризуется незавершенностью процесса рекристаллизации, которая не успевает закончиться, так как скорость ее недостаточна по сравнению со скоростью деформации. Часть зерен остается деформированными и металл упрочняется. Возникают значительные остаточные напряжения, которые могут привести к разрушению. Такая деформация наиболее вероятна при температуре, незначительно превышающей температуру начала рекристаллизации. Ее следует избегать при обработке давлением.

При неполной холодной деформации рекристаллизация не происходит, но протекают процессы возврата. Температура деформации несколько выше температуры возврата, а скорость деформации меньше скорости возврата. Остаточные напряжения в значительной мере снимаются, интенсивность упрочнения снижается.

При холодной деформации разупрочняющие процессы не происходят. Температура холодной деформации ниже температуры начала возврата.

Холодная и горячая деформации не связаны с деформацией с нагревом или без нагрева, а зависят только от протекания процессов упрочнения и разупрочнения. Поэтому, например, деформация свинца, олова, кадмия и некоторых других металлов при комнатной температуре является с этой точки зрения горячей деформацией.

Схемы напряженного и деформированного состояний

Схемы напряженного состояния графически отображают наличие и направление главных напряжений в рассматриваемой точке тела.

Напряжения в точке изображаются как напряжения на трех бесконечно малых гранях куба, соответственно перпендикулярных главным осям.

Возможны девять схем напряженного состояния (рис.9.1. а). Напряженное состояние в точке может быть линейным, плоским или объемным.

Рис.9.1. Схемы напряженного (а) и деформированного (б) состояний:

I - линейное напряженное состояние; II - плоское; III – объемное.


Схемы с напряжениями одного знака называют одноименными, а с напряжениями разных знаков - разноименными. Условно растягивающие напряжения считают положительными, с сжимающие - отрицательными.

Схема напряженного состояния оказывает влияние на пластичность металла. На значение главных напряжений оказывают существенное влияние силы трения, возникающие в месте контакта заготовки с инструментом, и форма инструмента. В условиях всестороннего неравномерного сжатия при прессовании, ковке, штамповке сжимающие напряжения препятствуют нарушению межкристаллических связей, способствуют развитию внутрикристаллических сдвигов, что благоприятно сказывается на процессах обработки металлов давлением. В реальных процессах обработки давлением в большинстве случаев встречаются схемы всестороннего сжатия и состояния с одним растягивающим и двумя сжимающими напряжениями.

Схема деформированного состояния графически отображает наличие и направление деформации по трем взаимно перпендикулярным направлениям.

Возможны три схемы деформированного состояния (рис.9.1. б).

При схеме Д I уменьшаются размеры тела по высоте, за счет этого увеличиваются два других размера (осадка, прокатка).

При схеме Д II происходит уменьшение одного размера, чаще высоты, другой размер (длина) увеличивается, а третий (ширина) не изменяется. Например, прокатка широкого листа, когда его ширина в процессе прокатки практически не изменяется. Это схема плоской деформации.