Смекни!
smekni.com

Технология получения полисахарида хитозана из хитина, выделяемого из панцирей ракообразных (стр. 2 из 7)

Хитозан является b-(1-4) - 2-амино-2дезокси-D-гликополисахаридом, т.е. аминополисахаридом, полученным при удалении ацетильной группы из положения С2 в хитине в результате обработки его в жестких условиях раствором щелочи, что позволяет заместить ацетильные группы хитина аминогруппами:

В зависимости от источника сырья и метода получения молекулярная масса хитозана колеблется в пределах 3·105-6·105.

Как и хитин, хитозан представляет собой аморфно-кристаллический полимер, для которого также характерно явление полиморфизма, причем количество структурных модификаций при переходе от хитина к хитозану увеличивается до 6. Сохранение при этом размеров элементарной ячейки кристаллита вдоль оси макромолекулы на уровне соответствующей характеристики для хитина (103 нм) свидетельствует о том, что конформация макромолекул при переходе от хитина к хитозану существенно не изменяется. В то же время в процессе деацетилирования хитина заметно уменьшается общая упорядоченность структуры (степень кристалличности снижается до 40-50%). Снижение степени кристалличности может быть обусловлено как аморфизацией структуры вследствие внутрикристаллитного набухания при деацетилировании, так и нарушением регулярности строения полимерной цепи в случае неполного отщепления N-ацетильных групп.

В отличие от хитина, получаемый при его деацетилировании хитозан растворяется даже в разбавленных органических кислотах, например в водном растворе уксусной кислоты. При этом для растворов хитозана, как и других полимеров, характерна существенная зависимость вязкости от концентрации (при увеличении концентрации раствора хитозана в 1-2% -ном растворе уксусной кислоты с 2 до 4% вязкость раствора увеличивается примерно в 30 раз). Появление в каждом элементарном звене макромолекулы свободной аминогруппы придает хитозану свойства полиэлектролита, одним из которых является характерный для растворов полиэлектролитов эффект полиэлектролитного набухания - аномального повышения вязкости разбавленных растворов (с концентрацией ниже 1 г/л) при уменьшении концентрации полимера. Этот эффект является следствием увеличения эффективного объема и асимметрии макромолекул в растворе в результате отталкивания одноименных зарядов, возникающих при протонировании аминогрупп [2,3].

Хитозан является биополимером относительно слабой основности (рКа~ 6,5). Он не растворяется в щелочных средах, однако его катионная полиэлектролитная природа в кислой среде обеспечивает взаимодействие с отрицательно заряженными синтетическими или природными полимерами. Этот катионный полиамин имеет высокий молекулярный вес линейного полиэлектролита, а также обладает вязкостью от высокой до низкой. Проявляет хелатные свойства, связывает переходные металлы, обладает высокой способностью к химической модификации благодаря наличию реактивных амино - и гидроксильных групп. Кроме того, хитозан является природным биополимером, который биологически совместим с тканями организма, биодеградирует до обычных компонентов организма (глюкозамин, N-ацетилглюкозамин), нетоксичен, в медицине проявляет себя как гемостатик, бактериостатик, фунгистатик, иммуномодулятор, оказывает антиопухолевый эффект и снижает уровень холестерина [4].

Способы получения хитозана

Как говорилось ранее, хитозан является аминополисахаридом, полученным при удалении ацетильной группы в хитине в результате обработки его в жестких условиях раствором щелочи, что позволяет заместить ацетильные группы хитина аминогруппами. Таким образом, стадии деацетилирования хитина всегда предшествует процесс его выделения из хитинсодержащего сырья. Хитин как нерастворимый полимер не поддается выделению из панциря напрямую. Для его получения необходимо последовательно отделить белковую и минеральную составляющие панциря, т.е. перевести их в растворимое состояние и удалить. Для получения хитина и его модификаций с воспроизводимыми характеристиками необходимо исчерпывающее удаление белковой и минеральной составляющих панциря. Все известные способы извлечения хитина из ПСС можно разделить на три основные группы:

- химическая обработка кислотами, щелочами, комплексонами и др.;

- методы биотехнологии, применение ферментных препаратов и протеолитических бактерий;

- электрохимический способ.

Деацетилирование хитина. Получение хитозана

В основе получения хитозана лежит реакция отщепления от структурной единицы хитина-N-ацетил-D-глюкозамина ацетильной группировки или реакция деацетилирования.

Транс-расположение в элементарном звене макромолекулы хитина заместителей (ацетамидной и гидроксильной групп) у С2 и С3 обусловливает значительную гидролитическую устойчивость ацетамидных групп, в том числе и в условиях щелочного гидролиза. Поэтому отщепление ацетамидных групп удается осуществить лишь в сравнительно жестких условиях - при обработке 40-49% -ным водным раствором NaOH при температуре 110-1400С в течение 4-6 часов. Однако и в этих условиях степень деацетилирования (доля отщепившихся ацетамидных групп в расчете на одно элементарное звено) не достигает единицы, то есть не обеспечивается количественное удаление этих групп, составляя обычно 0,8-0,9 [3].

Реакция ДА сопровождается одновременным разрывом гликозидных связей полимера, т.е. уменьшением молекулярной массы, изменением надмолекулярной структуры, степени кристалличности и т.д. Таким образом, хитозан представляет собой полидисперсный по молекулярной массе полимер D-глюкозамина, содержащий 5-15% ацетамидных групп, а также до 1% групп, соединенных с аминокислотами и пептидами [5].

Процесс ДА проводят обычно с помощью концентрированных щелочей при повышенных температурах. Первым опытом получения хитозана, было сплавление хитина с твердой щелочью при 1800С. Этим способом получали продукт со степенью деацетилирования (СД) 95%, но значительно деструктированный (до 20 единиц).

Наиболее распространено ДА растворами щелочей 30-50% -ной концентраций, поскольку оно является более мягким. ДА в водных растворах щелочей может обеспечить 100% -ную степень деацетилирования при использовании ступенчатого процесса и значительно менее деструктурирует хитозан. При получении хитозана в указанных условиях одновременно с реакцией ДА идет деструкция хитина, т.е. разрыв его цепей по гликозидным связям, что приводит к уменьшению молекулярной массы хитозана и снижению его вязкости [1,6,7]. Высокая устойчивость хитина к ДА объясняется наличием водородной связи между карбонильной группой и азотом амидной группы смежных цепочек хитина в мицелярной структуре. Для разрушения этой, весьма прочной связи, процесс ведут при высокой температуре (100-1600С). С увеличением температуры даже при невысокой концентрации щелочи (30%) степень ДА достигает почти предельного значения (98%), однако при этом снижается молекулярная масса, а, следовательно, и вязкость растворов полученного хитозана. Для сохранения молекулярной массы полимера предпочтительно снижать температуру обработки хитина [6].

Как уже отмечалось, структура хитина представляет собой кристаллическую решетку, в связи, с чем степени растворимости и набухания хитина в различных средах довольно низки. Степень измельчения хитина перед ДА важна для получения однородного продукта. Измельчение хитина облегчает доступ деацетилирующего агента внутрь структуры, благодаря чему достигается равномерное протекание процесса ДА и сопровождающей его деструкции. При использовании слишком крупных частиц хитина процесс ДА проходит не в полной мере, поверхностные слои таких частиц деацетилированы в большей степени, чем внутренние. При растворении в уксусной кислоте эти поверхностные слои образуют раствор, а внутренние слои частиц не полностью деацетилированные, только набухают. Такой неоднородный по СД хитозан может иметь ограниченное применение. В случае достаточно тонкого измельчения хитина все слои частиц деацетилируются в одинаковой степени, что приводит к получению более однородного продукта.

Важную роль в снижении степени деструкции хитина играет среда, в которой проводят реакцию ДА, т.е. присутствие в ней кислорода. Разработан ряд способов удаления кислорода из сферы реакции. Самый простой из них - плотная укладка и подпрессовка смоченного щелочью хитина с последующим вытеснением из тары остатков воздуха азотом и ее герметизацией. Применяется также барботирование реакционной смеси азотом, пропускание азота над поверхностью суспензии и др. Во всех случаях при ДА хитина в инертной среде отмечается повышение молекулярной массы и вязкости хитозана без снижения СД в противовес данным, полученным при деацетилировании хитина на воздухе.

Важным фактором при ДА хитозана является перемешивание реакционной массы. Известны способы получения хитозана и в реакторах с перемешиванием и в емкостях из различных материалов (включая полимерные) без перемешивания. В случае применения перемешивания необходимо учитывать консистенцию реакционной массы, которая определяется соотношением жидкой и твердой фаз. Оптимальным можно считать массовое соотношение хитин: раствор щелочи 1: 5-1: 12 в зависимости от качества хитина, взятого для обработки. Такая суспензия хорошо перемешивается в реакторе и не требует лишнего объема щелочи. [8]