Смекни!
smekni.com

Технология регенерации очистки и осветления отработанных масел (стр. 2 из 4)

Химический метод очистки масла основан на активной реакции веществ, загрязняющих отработанные масла с вводимыми в эти масла присадками реагентами. После химической реакции образуются новые соединения, легко удаляемые из масла. К химическим методам очистки относятся кислотная и щелочная очистки, окисление кислородом, гидрогенизация, а также осушка и очистка от загрязнений с помощью окислов, карбидов и гидридов металлов. Наиболее часто используются следующие методы:

Сернокислотная очистка

По числу установок и объему перерабатываемого сырья на первом месте в мире находятся процессы с применением серной кислоты. В результате сернокислотной очистки образуется большое количество кислого гудрона - трудно утилизируемого и экологически опасного отхода. Кроме того, сернокислотная очистка не обеспечивает удаление из отработанных масел полициклических аренов и высокотоксичных соединений хлора.

Гидроочистка

Гидрогенизационные процессы все шире применяются при переработке отработанных масел. Это связано как с широкими возможностями получения высококачественных масел, увеличения их выхода, так и с большой экологической чистотой этого процесса по сравнению с сернокислотной и адсорбционной очистками.

Недостатки процесса гидроочистки - потребность в больших количествах водорода, а порог экономически целесообразной производительности (по зарубежным данным) составляет 30-50 тыс. т/год. Установка с использованием гидроочистки масел, как правило, блокируется с соответствующим нефтеперерабатывающим производством, имеющим излишек водорода и возможность его рециркуляции.

Процессы с применением натрия и его соединений

Для очистки отработанных масел от полициклических соединений (смолы), высокотоксичных соединений хлора, продуктов окисления и присадок применяются процессы с использованием металлического натрия. При этом образуются полимеры и соли натрия с высокой температурой кипения, что позволяет отогнать масло. Выход очищенного масла превышает 80 %. Процесс не требует давления и катализаторов, не связан с выделением хлоро- и сероводорода. Несколько таких установок работают во Франции и Германии. Среди промышленных процессов с использованием суспензии металлического натрия в нефтяном масле наиболее широко известен процесс Recyclon (Швейцария). Процесс Lubrex с использованием гидроксида и бикарбоната натрия (Швейцария) позволяет перерабатывать любые отработанные масла с выходом целевого продукта до 95 %.

Для регенерации отработанных масел применяются разнообразные аппараты и установки, действие которых основано, как правило, на использовании сочетания методов (физических, физико-химических и химических), что дает возможность регенерировать отработанные масла разных марок и с различной степенью снижения показателей качества.

Необходимо отметить, что при регенерации масел возможно получать базовые масла, по качеству идентичные свежим, причем выход масла в зависимости от качества сырья составляет 80-90%, таким образом, базовые масла можно регенерировать еще по крайней мере два раза., но это возможно реализовать при условии применения современных технологических процессов.

Одной из проблем, резко снижающей экономическую эффективность утилизации отработанных моторных масел, являются большие расходы, связанные с их сбором, хранением и транспортировкой к месту переработки.

Организация мини-комплексов по регенерации масел для удовлетворения потребностей небольших территорий (края, области или города с населением 1-1,5 млн. человек) позволит снизить транспортные расходы, а получение высококачественных конечных продуктов - моторных масел и консистентных смазок, приближает такие мини-комплексы по экономической эффективности к производствам этих продуктов из нефти.

5. Опыт применения технологии холодной регенерации дорожных покрытий в США

Вопросы ремонта асфальтобетонных покрытий в США весьма актуальны, поскольку около 94% автомагистралей (а общая протяженность дорожной сети в стране составляет 2,3 млн миль или 3,7 млн км) имеют асфальтобетонное покрытие. В США при ремонте и реконструкции существующих дорог все более широкое применение находит технология холодного ресайклинга дорожных покрытий на месте.

Комплект немецкой фирмы Wirtgen WR 4200 позволяет за один проход выполнить холодный ресайклинг на ширину 2,8–4,2 м, имеет максимальную производительность смешения до 400 т/ч и позволяет использовать в качестве вяжущего как битумную эмульсию, так и вспененный битум

Холодный ресайклинг состоит в фрезеровании старого дорожного покрытия, последующем смешении асфальтовой крошки или каменного материала с вяжущим (как правило, битумной эмульсией, реже вспененным битумом) и уплотнении смеси. Технология холодного ресайклинга появилась сравнительно недавно – в самом конце 70– х годов XX столетия сначала в Западной Европе, а спустя несколько лет в США. Ее широкому использованию в 80–90-х годах предшествовал выпуск специальных машин для холодной регенерации покрытия, способных сфрезеровать старое покрытие, измельчить его, смешать с вяжущим и распределить полученную смесь ровным слоем для последующей укатки. Появлению машин с мощным фрезерным барабаном для измельчения асфальтобетонного покрытия способствовали нефтяные кризисы 1973 и 1979 гг., которые привели к удорожанию битума в 3 раза в течение 5 лет, вследствие эмбарго на импорт арабской нефти. Уже в 1981 г. Федеральная Дорожная Администрация США издала постановление, в соответствии с которым ресайклинг должен был рассматриваться как один из вариантов при проектировании усиления всех конструкций дорожных одежд на объектах, заказчиками которых являлись федеральное правительство или штаты. Переходу на эту технологию также способствовали прогресс в области приготовления и регулирования свойств битумных эмульсий и рост интереса к применению битумов, модифицированных полимерами, в частности – в эмульгированном виде для поверхностной обработки.

Холодный ресайклинг как способ ремонта дорожной одежды имеет ряд очевидных преимуществ. Исключена необходимость вывоза удаляемого материала старого покрытия и доставки свежей горячей асфальтобетонной смеси. Не нужно складировать удаленный материал вблизи ремонтируемого участка, что не всегда возможно, особенно в городе. Не требуется разогревать старое покрытие до «голубого дымка», как это делалось по технологии горячей термофрезерной регенерации, что важно как с точки зрения экономии энергии, так и охраны окружающей среды. Расход битума гораздо меньше, чем при устройстве нового покрытия. Полностью используется старый каменный материал (для улучшения зернового состава асфальтобетонной смеси в него может быть добавлен новый щебень).

Таким образом, определяющими преимуществами холодной регенерации являются: экономия топлива, трудозатрат и битума, а также соответствие самым высоким требованиям охраны окружающей среды.

Холодный ресайклинг применяют в двух вариантах:

с фрезерованием на неполную толщину дорожной одежды; обычно на толщину слоев покрытия, содержащих битум (Cold In-Place Recycling – CIR), либо на глубину меньше суммарной толщины битумосодержащих слоев (т. н., неглубокий ресайклинг, от 5 до 10 см);

с фрезерованием на полную толщину (Full Depth Reclamation – FDR) – глубокий ресайклинг, как правило, на глубину 10–30 см, охватывающую как «черные» слои, так и верхнюю часть щебеночного основания.

Глубокий ресайклинг – фактически единственный из известных методов ремонта щебеночного основания, исключающий полную перестройку всей дорожной одежды. Это весьма важно, поскольку на практике довольно часто оказывается, что старое щебеночное основание существенно снизило свою распределяющую и фильтрующую способность, грунт земляного полотна под влиянием изменившихся условий постоянно переувлажнен, а толщина старого асфальтобетонного покрытия не может быть увеличена, поскольку это приведет к увеличению вертикальных отметок поверхности покрытия, что зачастую затруднительно (например, при ремонте аэродромных покрытий) или вообще невозможно (в условиях существующей городской застройки, на подходах к мостам, при необходимости сохранения подмостового габарита по высоте под путепроводом и т. д.). В итоге, в США сейчас чаще используется холодный ресайклинг на полную глубину. К тому же, по аналогичной технологии можно ремонтировать существующее щебеночное покрытие со старой поверхностной обработкой или без нее, добавляя в сфрезерованную смесь вместе с битумной эмульсией – портландцемент, золу уноса, известь. Технология холодного ресайклинга на неполную глубину также имеет много преимуществ, о которых будет сказано ниже.

Комплект американской фирмы Roadtec (штат Теннеси) предназначен для холодного планирования и для холодного ресайклинга с битумной эмульсией или вспененным битумом.

Экономичность холодного ресайклинга можно коротко охарактеризовать таким примером: при современных ценах на битум восстановленное с его помощью асфальтобетонное покрытие толщиной 10 см, обходится дешевле, чем новый слой усиления из горячей асфальтобетонной смеси толщиной 3,5 сантиметров. Особенно привлекателен холодный ресайклинг в районах, удаленных от асфальтобетонных заводов.

После ремонта по этой технологии получается монолитный слой без трещин с ровной поверхностью. Но прочность материала этого слоя, в частности, его сопротивление износу, меньше, чем у горячего асфальтобетона, поэтому поверх него, необходимо нанести защитный слой, который бы непосредственно воспринимал воздействие колес автотранспортных средств. При малой интенсивности движения в США ограничиваются устройством поверхностной обработки на битумной эмульсии; при более высокой – устраивают поверхностную обработку на полимерно-битумном вяжущем: а при большой – асфальтобетонное покрытие из горячей смеси.

Так как холодный ресайклинг – относительно новая технология, единый технический регламент, стандартные требования к материалам и смесям, а также методики определения их расчетных характеристик еще не созданы, хотя работы в этом направлении ведутся. Поэтому технология холодного ресайклинга пока в значительной мере определяется искусством инженера и накопленным им опытом. Поскольку машинам, применяемым при холодном ресайклинге, был посвящен недавно опубликованный в каталоге-справочнике обстоятельный обзор М.П. Костельова, в данной статье основное внимание уделено вяжущим, смесям и конструкции ремонтируемой дорожной одежды.