Смекни!
smekni.com

Технології хімічної промисловості (стр. 2 из 3)

До комплексних добрив можуть входити всі три поживні елементи (їх тоді називають повними), або два. До них належать амофос, нітрофоска, діамофос, нітроамофоска та ін. Співвідношення поживних речовин у комплексних добривах різне. Цінність комплексних добрив насамперед в тому, що із них поживні речовини засвоюються повніше, зменшуються витрати. За способом одержання комплексні добрива можуть бути змішані і складні. Змішані одержують механічним перемішуванням частинок різних добрив, складні - хімічним способом або внаслідок сумісної кристалізації. До складу комплексних добрив часто входять мікроелементи.

Мінеральні добрива випускають найчастіше гранульованими. Це спрощує процес внесення їх у ґрунт, покращує їх зберігання, запобігає швидкому руйнуванню.

Аміачна селітра.

Із всіх азотних добрив аміачну селітру використовують найчастіше. Сировиною для її одержання є азотна кислота та аміак. Одержують її шляхом нейтралізації кислоти аміаком.

NH3 + HN03↔NH4N03 +Q

Процес нейтралізації відбувається в спеціальному нейтралізаторі. Реакція йде з виділенням теплоти, тому розчин буде нагрітим. Далі розчин випарюється у вакуум-випарному апараті. Утворюється плав, який гранулюють в грануляційній башті повітряним потоком. Гранули додатково охолоджують і поділяють на фракції. При гранулюванні аміачної селітри додають негігроскопічні домішки. Одержані гранули припудрюють помеленим гіпсом, каоліном, фосфоритним або костяним борошном.

Техніко-економічні показники.

Вміст азоту в аміачній селітрі до 35%. Ефективність використання аміачної селітри зумовлюється її високою водорозчинністю і засвоюваністю рослинами. Вона потрібна всім рослинам. її легко вносити в ґрунт. Поряд з тим, це добриво при тривалому зберіганні злежується, може перекристалізовуватися із збільшенням об'єму, що приводить до руйнування тари. При підвищенні температури і вологості (під час зберігання) вибухає, що потрібно враховувати при зберіганні і транспортуванні.

2.3 Високомолекулярні сполуки

Високомолекуляршши сполуками (ВМС) називають сполуки, що мають велику молекулярну масу (великі розміри молекул). їх іще називають полімерами. В макромолекулах ВМС сотні і тисячі молекул, які пов'язані між собою. Будова макромолекул така, що в них є однотипні групи атомів (елементарні лапки), які багаторазово повторюються. Ланки з'єднані хімічними зв'язками в ланцюги. Число цих ланок називають ступенем полімеризації (n). Із збільшенням молекулярної маси поліпшуються властивості полімера.

Важливою характеристикою ВМС є їх відношення до температури. Вони здебільшого мають низьку температуростійкість. За відношенням до температури полімери є термопластичні (здатні до багаторазового нагрівання до температури плавлення і затвердіння) і термореактивні (при нагріванні плавляться, а далі твердіють безповоротно, втрачаючи здатність плавитися).

Полімери здебільшого важкорозчинні. Вони розчиняються повільно і часто спочатку набухають, тоді молекули розчинника проникають у масу полімера. Деякі полімери зовсім нерозчинні.

При класифікації полімерів до уваги приймають такі ознаки: походження (природні і синтетичні), хімічний склад головного ланцюга (карболанцюгові - головний ланцюг має лише атоми вуглецю, гетероланцюгові - присутні також кисень, азот, сірка, фосфор, кремній), структуру макромолекули (лінійні, розгалужені і тривимірні), методи одержання (полімеризаційні і поліконденсаційні), фізичні властивості.

Одержують полімери із мономерів реакціями полімеризації і поліконденсації.

Полімеризацією називають процес з'єднання молекул при розриві подвійних зв'язків. Макромолекули мають однаковий з вихідним мономером склад. Різновидністю полімеризації є сополімеризація - полімеризація двох або більше різних мономерів. Розміщення елементарних ланок в макромолекулі сополімера має випадковий характер.

Поліконденсацією називають процес утворення макромолекул з одночасним виділенням побічних низькомолекулярних сполук (води, вуглекислого газу, аміаку та ін.). Елементарний склад цих полімерів відрізняється від елементарного складу вихідних мономерів.

Сировиною для одержання полімерів є продукти переробки деревини, вугілля, нафти, природного і супутного газів. Крім того, при одержанні полімерів використовують мінеральну сировину - сірчану, азотну кислоти, хлор, оксид кальцію, а також деяку рослинну сировину - целюлозу, фурфурол та ін.

Високомолекулярні сполуки, до яких належать льон, бавовна, вовна, целюлоза, хімічні волокна, смоли, пластмаси, каучуки, лаки та ін., відіграють важливу роль у створенні різних матеріалів та виробів. Синтетичні ВМС є порівняно новими матеріалами, оскільки їх почали виробляти і використовувати лише з початку XX ст. Сьогодні полімери належать до прогресивних матеріалів і впливають на темпи розвитку науково-технічного прогресу.

Основними споживачами матеріалів та виробів на основі високомолекулярних сполук є: машино-, літако- та суднобудування, радіоелектроніка, ракетобудування, атомна промисловість, космічна техніка, хімічна промисловість, сільське господарство, харчова, легка й інші галузі промисловості.

До цінних техніко-економічних характеристик полімерів належать: порівняно висока механічна міцність, пружність та еластичність, стійкість в агресивних середовищах, зносостійкість, мала густина, висока технологічність. Крім того, для одержання полімерів є різноманітна сировина. Використання полімерів допомогло розв'язати багато актуальних народногосподарських завдань - підвищення якості, надійності і довговічності виробів, економія металів, боротьба із корозією, збільшення сільськогосподарської продукції та ін. Потреба в полімерних матеріалах сприяє розвитку прогресивних технологій їх одержання. Разом з тим, полімери володіють і негативними властивостями. Це низька температуростійкість, мала твердість, старіння (з часом їх якість знижується), висока собівартість.

Поліетилен.

Поліетилен одержують з етилену трьома способами: полімеризацією під високим тиском (100-200 МПа) і при температурі 180-200°С в присутності кисню або перекисів (кисню беруть 0,005-0,5% від кількості етилену); полімеризацією при середньому тиску (3-7 МПа) в присутності оксидних каталізаторів (оксидів хрому); при низькому тиску (0,2-0,6 МПА) в присутності металорганічних каталізаторів.

Поліетилен, одержаний при середньому і низькому тиску має лінійну будову, велику молекулярну масу (до 70000), вищу температуру плавлення. Він міцний, теплостійкий і малорозчинний. З такого поліетилену виготовляють труби, високоміцні деталі. Одночасно він важко переробляється і дорогий.

Поліетилен високого тиску виробляють за такою схемою (рис.3). Суміш етилену і кисню подається в компресор 1, де стискається до 200 МПа. Стиснена суміш проходить через масловіддільник 2, де очищається і потрапляє в реактор 3. У верхній частині реактора стиснена суміш нагрівається до температури реакції (200°С), в нижній частині реактора етилен полімери-зується(100-125°С).

Реактор - це змійовик із труби діаметром 25 мм і загальною довжиною до 300 м. Верхня частина труб обігрівається водою, нижня нею охолоджується. За один цикл полімеризується 15-20% етилену. Із реактора реакційна суміш надходить до випарника 4, де тиск знижується до 20 МПа. Газоподібний етилен відокремлюється від поліетилену в газосепараторі 5, подається у вловлювач 6, де очищається, промивається від побічних продуктів і знову повертається в процес. Поліетилен із сепаратора 5 йде на грануляцію.

Техніко-економічні показники.

Поліетилен міцний, хімічно стійкий, водонепроникний, має діелектричні властивості, добре переробляється у вироби. На основі поліетилену виготовляють пластичні маси. При виготовленні поліетилену використовується циклічна технологічна схема, що дає можливість довести ступінь перетворення етилену в поліетилен до 96-98%. Поліетилен має дуже багато сфер використання - для виготовлення деталей і конструкцій (труби, арматура, деталі машин і приладів), для захисних покрить металевих виробів, як гідроізолятор, теплоізолятор, пакувальний матеріал, для виготовлення посуду (в тому числі хімічного), плівки, листів, стрічок, прутів та ін.

Пластичні маси.

Це високополімерні матеріали або їх композиції, що здатні при певних умовах (підвищений тиск, температура) переходити в пластичний стан і деформуватися. Одержану форму вони зберігають при охолодженні і твердінні.

За складом пластмаси поділяють на прості і композиційні. Прості пластмаси містять тільки полімер, наприклад поліетилен, поліпропілен та ін. Композиційні пластмаси - багатокомпонентні. Крім полімеру вони містять наповнювачі, пластифікатори, твердителі, стабілізатори, барвники, мастильні речовини, газоутворювачі. Кожен із цих компонентів поліпшує властивості пластмас.

Пластмаси у вироби переробляють штампуванням, пресуванням, литтям, витисканням (екструзією), вакуумним і пневматичним формуванням. їх піддають обробці різанням, зварюють, склеюють.

Використовують пластмаси в машинобудуванні, приладо-, авіа-, автомобілебудуванні, електро-, радіотехніці, для виробництва засобів зв'язку, в будівництві, у сільському господарстві, в хімічній промисловості, для одержання товарів широкого вжитку.

Техніко-економічні характеристики.

Пластичні маси мають малу об'ємну масу, високі діелектричні властивості, стійкість до корозії, низьку тепло- й електропровідність, високу пластичність, порівняно високу міцність, деякі мають оптичні властивості, легко переробляються у вироби. Разом з тим, пластмаси старіють, від цього дістають жорсткість, крихкість, знижується їх механічна міцність. Більшість пластмас розм'якшуються і деформуються при нагріванні, стають крихкими при низьких температурах. Деякі при поглинанні вологи набухають. Сьогодні одержують багато різновидів спеціальних пластмас, які замінюють металеві та інші конструкційні матеріали. Розширюється використання нафтохімічної сировини для виробництва пластмас, поліпшуються їх властивості, синтезуються нові види пластмас на основі радіаційних процесів.