Смекни!
smekni.com

Установка и способ для получения расплавов железа (стр. 11 из 11)

(SiO2)+2Fe=2(FeO)+[Si]; (SiO2)+2[C]=2CO+[Si].

В отличие от основного процесса при кислом ферромарганец присаживают в конце плавки в раздробленном виде в ковш. При таком способе усваивается до 90 % марганца. Конечное раскисление проводят алюминием.

Получение низкоуглеродистой коррозионностойкой стали (процессы AOD и VOD).

Широкое распространение получают методы производства низкоуглеродистой коррозионностойкой стали вне электропечи.

Метод AOD. В электропечи выплавляют основу нержавеющей стали, содержащей заданное количество хрома и никеля, с использованием недорогих, высокоуглеродистых ферросплавов. Затем сталь вместе с печным шлаком заливают в конвертер, профиль которого представлен на рис. 81. Футеровка конвертера изготовлена из магнезитохромитового кирпича. Стойкость футеровки до 200 плавок. В нижней зоне футеровки, в третьем ряду кирпичной кладки от днища конвертера. Фурмы представляют собой конструкцию из медной внутренней трубы и наружной трубы из нержавеющей стали, внутренний диаметр фурмы 12—15 мм. Начальное содержание углерода в стали может быть для ферритных хромистых сталей 2,0—2,5 %, а для аустенитных сталей 1,3—1,7 %. В первые 35 мин сталь продувают смесью кислорода и аргона в соотношении 3 : 1. Во избежание перегрева металла в о, конвертер присаживают лом — данной марки стали, феррохром и т. п. Затем в течение 9 мин сталь продувают смесью кислорода и аргона в соотношении 1:1. В это время концентрация углерода снижается до 0,18%. В третьем периоде в продувочном газе еще более уменьшают отношение кислорода к аргону до 1:2, продувку продолжают еще 15 мин. За это время содержание углерода снижается до 0,035%. Температура повышается до 1720°С. В конце продувки присаживают известь и ферросилиций для восстановления хрома из шлака. После восстановления шлак, содержащий 1 % Cr2O3, скачивается и после наведения нового шлака проводят окончательную продувку аргоном. При этом в шлак переходит сера, ее содержание в металле снижается до 0,010 %.

В результате процесса AOD получают высококачественную нержавеющую сталь с низким содержанием углерода, серы, азота, кислорода, сульфидных и оксидных неметаллических включений, с высокими механическими свойствами. Для повышения экономичности процесса аргон частично заменяют азотом. Средняя продолжительность продувки составляет 60—120 мин, расход аргона составляет 10—23 м^3/т, кислорода 23 м^3/т. На рис. 82 представлено изменение температуры и состава металла. Степень извлечения хрома составляет 98%.

Метод VOD. Этот метод вакуумно-кислородного обезуглероживания с продувкой аргоном. В основе метода лежит осуществление реакции [C]+[O]=CO, равновесие которой в вакууме сдвигается в правую сторону. Чем ниже парциальное давление СО, тем ниже должна быть остаточная концентрация углерода в стали. При этом создаются благоприятные условия для восстановления оксида хрома углеродом, что позволяет проводить процесс обезуглероживания без заметных потерь хрома со шлаком. Коррозионностойкую сталь выплавляют в электропечи с достаточно высоким содержанием углерода (0,3—0,5 %); сталь выпускают в специальный ковш с хромомагнезитовой футеровкой, имеющим в днище фурму для подачи аргона. Ковш устанавливают в вакуумную камеру, откачивают воздух и начинают продувку кислородом сверху через водоохлаждаемую фурму, которую вводят в камеру через крышку.

Одновременно производится продувка аргоном через дно ковша. После окончания продувки проводят присадку раскислителей и легирующих для корректировки состава. Расход аргона в этом способе значительно ниже чем в AOD (всего 0,2 м^3/т). Получаемая сталь содержит очень низкие концентрации углерода (0,01 %) при низком содержании азота. Окисление хрома незначительное. Для удаления серы в ковш загружают известь, что позволяет после раскисления и кратковременного перемешивания аргоном снизить концентрацию серы в металле до необходимых пределов. По сравнению с процессом AOD этот метод более сложен и применяется для производства сталей ответственного назначения с низким содержанием углерода. К достоинствам того и другого процесса следует отнести экономию дорогого низкоуглеродистого феррохрома, обычно использовавшегося при получении нержавеющей стали в дуговых печах, а также достижение низких содержаний углерода без значительных потерь хрома.

Индукционные печи и плавка в них

В настоящее время индукционные печи находят широкое применение в металлургии и машиностроении. В лабораториях используют высокочастотные печи емкостью от нескольких грамм до 100 кг, в литейных цехах низко- и среднечастотные печи до 2—6 т; наиболее крупные печи имеют емкость до 60 т.

По сравнению с дуговыми электропечами в индукционных печах отсутствие электродов и электрических дуг дает возможность получать стали и сплавы с низким содержанием углерода и газов. Плавка характеризуется небольшим угаром легирующих элементов, высоким электрическим к. п. д„ точным регулированием температуры металла.

Недостатком печей является холодный, плохо перемешиваемый шлак, что не позволяет так же интенсивно, как в дуговых печах, проводить процессы рафинирования. Стойкость футеровки в печах невысокая.

Основной тип современных высокочастотных или индукционных печей — это печи без сердечника. Такая печь состоит из индуктора-катушки, навитой из медной трубки с водяным охлаждением. Внутрь индуктора вставляется либо готовый огнеупорный тигель, либо тигель набивается порошкообразным огнеупорным материалом. При наложении на индуктор переменного электрического тока частотой от 50 до 400 кГц образуется переменное магнитное силовое поле, пронизывающее пространство внутри индуктора. Это магнитное поле наводит в металлической садке вихревые токи.

Устройство индукционных печей

В центре печи помещен индуктор. Он имеет вид соленоида и изготовлен из профилированной медной трубы. По трубе идет вода для ее охлаждения. Внутри индуктора набит огнеупорный тигель. Ток подается по гибким кабелям. Печь заключена в металлический кожух. Сверху тигель закрывается сводом. Поворот печи для слива металла осуществляется вокруг оси, расположенной у сливного носка. Поворотные цапфы печи покоятся на опорных подшипниках станин. Наклон печи проводится при помощи реечного механизма через подвижные шарниры-цапфы или гидроприводом. Небольшие печи наклоняют при помощи тали.

Футеровка печей может быть кислой или основной, набивной или кирпичной. Для набивки используют огнеупорные материалы различной крупности от долей миллиметра до 2—4 мм. Для основной футеровки применяют порошок магнезита с добавками хромомагнезита и борной кислоты для связки. Кислые смеси готовят на основе молотого кварцита. Набивку тигля ведут послойно вокруг металлического шаблона, форма которого соответствует профилю тигля.

После окончания набивки футеровку спекают и обжигают. В железный шаблон загружают чугун, включают ток, металл постепенно разогревается и нагревает футеровку. Затем металл доводят до плавления. В первой плавке расплавляют мягкое железо, что позволяет достичь высокой температуры для обжига футеровки. Крупные печи футеруют фасонным огнеупорным кирпичом.

Электрическое оборудование

Индукционные печи питаются током высокой частоты от ламповых генераторов или током средней частоты (2500 Гц) от машинных преобразователей. Крупные печи работают на токе промышленной низкой частоты (50Гц от сети). Эти печи часто служат в качестве миксеров жидкого металла в литейных цехах.

В схему входят машинный генератор, батарея конденсаторов и автоматический регулятор, плавильный контур. Преобразовательный агрегат состоит из асинхронного электродвигателя, вращающего генератор и динамомашину, которая дает ток в обмотки возбуждения генератора.

Для компенсации реактивной мощности и создания электрического резонанса устанавливают батарею конденсаторов. Часть конденсаторов может быть отключена для изменения емкостной составляющей. Резонанс бывает при условии ?L=1/?C (L–коэффициент самоиндукции печи, C – емкость конденсатора, ? – угловая частота). Подбирая переменную емкость, можно работать в условиях, близких к резонансу, т.е. поддерживать cos? близкий к единице.

Автоматический регулятор электрического режима поддерживает оптимальную электрическую мощность взаимосвязанным регулированием cos?, напряжения и силы тока.

Технология плавки стали в индукционной печи

Плавку проводят на высококачественном ломе с пониженным содержанием фосфора и серы. Крупные и мелкие куски так укладывают в тигель или бадью, с помощью которой загружают крупные печи, чтобы они плотно заполняли объем тигля. Тугоплавкие ферросплавы укладывают на дно тигля. После загрузки включают ток на полную мощность. По мере проплавления и оседания скрапа подгружают шихту, не вошедшую сразу в тигель. Когда последние куски шихты погрузятся в жидкий металл, на поверхность металла забрасывают шлакообразующие материалы: известь, магнезитовый порошок, плавиковый шпат. Шлак защищает металл от контакта с атмосферой, предотвращает тепловые потери. По ходу плавки шлак раскисляют добавками порошка кокса, молотого ферросилиция. Металл раскисляют кусковыми ферросплавами и в конце алюминием. По ходу плавки дают добавки легирующих. Поскольку угара легирующих практически не происходит, то в индукционных печах можно выплавлять сплавы сложного состава.


Список использованной литературы

1. Металлургия черных металлов; Б.В. Линчевский, А.Л. Соболевский,

А.А. Кальменев