Смекни!
smekni.com

Устойчивость систем автоматического управления (стр. 2 из 6)

Критерий устойчивости Гурвица

Пусть дано характеристическое уравнение системы вида

(2)

при а0 > 0.

Гурвиц предложил алгебраический критерий, который основан на построении специальных определителей характеристического уравнения (2), называемых определителями Гурвица. Они составляются по следующим правилам:

по главной диагонали выписывают все коэффициенты от а1 до аnв порядке возрастания индекса;

дополняют столбцы определителя вверх от диагонали коэффициентами с последовательно возрастающими, а вниз – с последовательно убывающими индексами;

на место коэффициентов, индексы которых больше nи меньше 0, ставят нули.

В соответствии с этими правилами, определитель Гурвица n-го порядка для уравнения (2) имеет вид:

(3)

Определители Гурвица более низкого порядка являются диагональными минорами Dn. Например, при n = 3

;
;

Поскольку в последнем столбце определителя Dn стоят нули, за исключением, то


Критерий Гурвица формулируется следующим образом:

для того чтобы АСУ была устойчива необходимо и достаточно, чтобы все определители Гурвица

были положительными, и при этом выполнялось условие

a0>0.

Пример. Исследовать устойчивость системы стабилизации угла тангажа самолета и определить критическое значение передаточного числа автопилота по углу тангажа. Система задана структурной схемой.

На схеме обозначено:

ku- передаточное число (коэффициент передачи) автопилота по углу тангажа;

передаточная функция рулевого привода;

передаточная функция самолета по угловой скорости тангажа wz;

kwz - передаточное число автопилота по угловой скорости тангажа.

Для передаточной функции разомкнутой системы можно записать

где

Передаточная функция замкнутой системы примет вид

где

Составим определитель Гурвица

Оценим устойчивость системы для следующих значений параметров:


.

При этих значениях для коэффициентов характеристического уравнения получим

Следовательно, все коэффициенты характеристического уравнения замкнутой системы положительны и

Условия устойчивости выполнены и система при избранных параметрах устойчива.

Определим критическое значение передаточного числа по углу тангажа, для чего приравняем третий диагональный определитель нулю и сделаем преобразования.

Отсюда


В последнем выражении только d3 и d4 являются функциями коэффициента ku и подставив их в него, получим квадратное уравнение относительно этого коэффициента

Решив это уравнение, получим критическое значение передаточного числа по углу тангажа

Система устойчива, если ku<16.56.

Критерий устойчивости Рауса

Этот критерий представляет собой систему неравенств, составленных по особым правилам из коэффициентов характеристического уравнения замкнутой САУ.

Критерий Рауса требует несколько меньшего объема вычислений, чем критерий Гурвица и более удобен для программирования на ЭВМ. Для суждения об устойчивости системы по этому критерию необходимо составить таблицу Рауса.


Таблица Рауса

В первой строке таблицы записывают коэффициенты характеристического уравнения, имеющие четные индексы в порядке их возрастания. Во второй строке таблицы записывают коэффициенты с нечетными индексами в порядке их возрастания. В последующие строки вписывают коэффициенты, определяемые как

Условия устойчивости Рауса: Чтобы САУ была устойчивой необходимо и достаточно, чтобы все коэффициенты первого столбца таблицы Рауса имели один и тот же знак, то есть были положительными. Если не все коэффициенты первого столбца таблицы Рауса положительны, то есть САУ неустойчива, число правых корней характеристического уравнения равно числу перемен знака в первом столбце таблицы Рауса.

Частотные критерии устойчивости

Принцип аргумента.Частотные критерии устойчивости используются в графоаналитическом виде и отличаются большой наглядностью при проведении расчетов. В основе всех частотных методов лежит принцип аргумента.

Рассмотрим характеристическое уравнение системы

Если li, i=1,2,...n- корни этого уравнения, то

Каждому корню на комплексной плоскости соответствует определенная точка, и геометрически на этой плоскости каждый корень можно изобразить в виде вектора с модулем ½li½, проведенного из начала координат (рис.3.4). Сделаем замену s=jwи получим

В соответствием с правилом вычитания векторов получим, что конец каждого элементарного вектора (jw - li) находиться на мнимой оси.

Аргумент вектора D(jw) равен сумме аргументов элементарных векторов

Направление вращения вектора (jw - li) против часовой стрелки при изменении частоты от -¥ до +¥ принято считать положительным, а по часовой стрелке- отрицательным. Предположим, что характеристическое уравнение имеет m корней в правой полуплоскости и n - mкорней в левой полуплоскости. При изменении частоты от -¥ до +¥ каждый вектор (jw - li), начало которого лежит в левой полуплоскости повернется на угол +p , а каждый вектор, начало которого лежит в правой полуплоскости - на угол -p. Изменение аргумента вектора D(jw) при этом будет

(3.14)

Это выражение и определяет принцип аргумента.

Изменение аргумента вектора D(jw) при изменении частоты от -¥ до +¥ равно разности между числом (n-m) корней уравнения D(s)=0, лежащих в левой полуплоскости, и числом m корней этого уравнения, лежащих в правой полуплоскости, умноженной на p .

Критерий устойчивости Михайлова

Пусть дано уравнение замкнутой системы

где

– передаточная функция замкнутой системы.

Тогда дифференциальное уравнение системы, преобразованное по Лапласу можно записать в виде:

где

– характеристический полином n-ной степени.

В соответствии с основной теоремой алгебры этот полином можно разложить на множители в виде:

(4)

где p1, p2, …, pn- корни характеристического уравнения А(р) = 0.

Выражение (5) действительно при любых значениях p, в частности при p=jw. Тогда (5) можно переписать так:

(5)