Смекни!
smekni.com

Участок по переработке лома твёрдых сплавов способом хлорирования (стр. 4 из 13)

2) Окисление кислородом.

Возможна также переработка кусковых отходов твёрдых сплавов по схеме, предусматривающей окисление кислородом при 900-1000°С с последующим выщелачиванием WO3 из продукта обжига растворами соды или щелочи; можно перерабатывать и кусковые отходы твердых сплавов, содержащих вольфрам [3].

3) СВС-процесс

Для переработки отходов твердосплавного инструмента на основе карбидов тугоплавких металлов, содержащих Та, Nb, W, V, предложено использовать процесс самораспространяющегося высокотемпературного синтеза (СВС-процесс), который значительно интенсифицирует вскрытие отходов [4].

3.3. Основные этапы подготовки лома твёрдых сплавов.

Для правильной организации сбора, хранения, обезвреживания, обогащения и переработки вторичного сырья необходимо знать его состав, количество и свойства.

Перед выбором способа переработки вторичного сырья следует учитывать, что его состав в большинстве случаев существенно отличается от первичного. Поскольку в процессе эксплуатации может существенно изменяться вещественный и фазовый состав вторичного сырья (испарение, взаимная диффузия металлов и др.), возможно накопление токсичных и взрывоопасных соединений, загрязнение продуктами смазки и окисления. Это требует дополнительных операций, особенно на стадии обогащения.

Основные этапы подготовки лома твёрдых отходов включает:

Контроль радиоактивности, взрывоопасности и токсичности сырья. Особенно это касается лома изделий военной техники, в которых могут содержаться взрывчатые вещества, остатки твердого и жидкого топлива. Такое вторичное сырьё обязательно подвергается входному контролю на взрывобезопасность и присутствие токсичных и радиоактивных веществ.

Удаление и обезвреживание химических, взрыво - и радиационноопасных составляющих поступившего вторичного сырья;

Сортировка и выбор способа обогащения вторичного сырья, обычно это ручная сортировка.

Обезжиривание. Отсортированные грязные отходы загружают в установку для обезжиривания, где циркулируют пары перхлорэтилена. Этот растворитель удаляет смазку и масло. Смесь паров затем конденсируется для извлечения растворителя. Вредно воздействие перхлорэтилена.

Обдувка. Для удаления грязи, оксидов и ржавчины, обезжиренные отходы обдуваются дробью или металлическим порошком.

Травление и химическая обработка. Отходы от обдувки обрабатываются кислотами, чтобы устранить остаточную коррозию и окисные загрязнители.

Перед переработкой вторичное сырье нужно, пакетировать или (если это крупногабаритные детали) разрезать на куски, удобные для шихтовки или для дальнейшей переработки. В современной практике далеко не всегда имеются эффективные способы осуществления этих операций

Особо следует учитывать при разработке технологической схемы экологические проблемы. Выбранная схема должна характеризоваться минимальными объемами твердых отходов и сбросных растворов, предусматривать улавливание и утилизацию газообразных продуктов; по возможности не должны использоваться ядовитые вещества (ртуть, кадмий и др.).

Для переработки многокомпонентного вторичного сырья, разрабатывается, как правило, несколько альтернативных схем. Они подвергаются опытно-промышленной проверке, а затем выбирается схема, оптимальная по технико-экономическим, экологическим и другим показателям [6].

3.4. Исходные данные:

Сырье (вторичное): Лом твердых сплавов - режущие части металлорежущих инструментов (резцы, фрезы, сверла и т.п.), брак при изготовлении инструментов, фильеры, стеклорежущий инструмент, шары из мельниц барабанного типа, жаропрочные покрытия частей реактивных двигателей, футеровки химических реакторов и т.п.

Фазовый состав: Гетерогенный материал, представляющий собой смесь карбидной фазы (карбидов вольфрама и титана), связующий материал - металлический кобальт, металлические сплавы основы инструмента (чаще всего сталь марки СТ3, инструментальные и нержавеющие стали), паечные и сварные материалы (медь, цинк, олово, свинец), возможно присутствие керамических материалов.

Химический состав: Вольфрам, титан, кобальт, углерод, железо, хром, никель, медь и др.

Гранулометрический состав: Куски размером до 150-200 мм неправильной формы, обломки 5-50 мм, порошки 0,1-1,5 мм, пылевидный частицы до 30 мкм.

Свойства: а) механические - исключительно твердые и хрупкие карбиды, более мягкие металлические сплавы, мягкие паечные материалы (привести данные по шкале твердости Нб);

б) химические - растворимость в различных реагентах, действие газообразного хлора на твердую фазу, действие хлора на тот же материал, находящийся в расплаве хлоридов (натрия, калия или др. элементов) окисляемость при нагревании и обжиге и т.д.

Объем переработки: 10 тонн в год.

Способ переработки: Хлорирование лома твердых сплавов с получением TiCl4, WОСl4 и последующей переработкой на товарный TiO2 и WO3

Задание:

Выбрать способ хлорирования и составить схему переработки вторичного сырья (лома твердых сплавов)

Рассчитать материальный и тепловой баланс (химический состав сырья рассчитать, исходя из тв. сплава марки Т15К6 (15% карбида титана 6% металлического кобальта, остальное – карбида вольфрама), количество твердосплавной фазы принять 90%, Остальные 10% составляют примеси:

(железо - 7%, медь - 0,3%, цинк - 0,3%, хром - 0,7%, никель - 0,7%, марганец - 0,9%, кремний - 0,1%).

Подобрать необходимое технологическое оборудование.

Оценить данный процесс с точки зрения безопасности.

3.5. Свойства компонентов вторичного сырья, которые могут быть использованы при разработке принципиальной технологической схемы процесса переработки сырья [6].

Таблица 3.5.1

Компонент

Состав компонента%

Содержание во вторичном сырье% Плотность, кг/м3 Температура плавления, oC Электрическое сопротивление, Ом·м

Тип магнетика

Краткие химические свойства

компонента

Твёрдый сплав Т15К6

TiC ~ 15,0

Co ~ 6,0

Остальное WC

90 11100–11600 - ~ 10 · 10-8 Парамагнетик

Устойчив против воздействия кислот и щелочей, не окисляются на воздухе до температуры 600-800°С.

Сталь СТ3

C ~ 0,1 – 0,22

Si ~ 0,15 – 0,3

Mn ~ 0,4 – 0,65

Ni до 0,3

Cr до 0,3

Cu до 0,3

Остальное Fe

9,4 7700-7800 1300-1400 ~ 9,0 · 10-8 Ферромагнетики

Медленно окисляется во влажном воздухе. Не реагирует с водой, гидратом аммиака; пассивируется в концентрированных серной и азотной кислотах, разбавленных щелочах.

Реагирует с разбавленными кислотами, концентрированными щелочами, неметаллами, монооксидом углерода. Вытесняет благородные металлы из их солей в растворе.

Инструмен-тальная сталь

C ~ 0.8 - 1.0

Si ~ 0.25

Mn ~ 0.25 - 0.30

Cr ~ 0.15

Остальное Fe

Нержавеющая сталь

C < 0,12

Si ~ 1.0

Mn ~ 1,5

Ni ~ 5.0

Cr ~ 15

Остальное Fe

Не реагируют с водой, щелочами, гидратом аммиака; пассивируется в концентрированных серной и азотной кислотах, разбавленных щелочах.

Медленно реагирует с разбавленными HCl и H2SO4 кислотами.

Паечные материалы 55% Cu, остальное Zn 0,6 8400 1343 - 1143 40 · 10-8 Диамагнетик Не реагируют с водой, разбавленной хлороводородной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии О2, цианидом калия. Окисляется концентрированными серной и азотной кислотами, "царской водкой", кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

3.6 Обоснование выбора стадий предварительной обработки сырья.

Первые стадии переработки лома связаны с операциями измельчения и обогащения.

Измельчение обычно проводят в молотковых дробилках с классификацией и возвратом крупной фракции на начальную стадию.

Для разделения сложного многокомпонентного вторичного сырья применяют различные методы обогащения: воздушную сепарацию, гидродинамическое обогащение, электростатическую сепарацию, магнитную сепарацию, флотацию и др.

Электромагнитная сепарация

Метод основан на различии в магнитных свойствах компонентов вторичного сырья.

При разработке схемы переработки сырья можно использовать электромагнитную сепарацию. Данный метод позволит нам легко отделить сильномагнитные частицы − ферромагнетики.

Таблица.3.6.1 Магнитная восприимчивость материалов.

Вид материала Магнитная восприимчивость материалов − χ Рекомендуемая напряженность магнитного поля, кА/м
Ферромагнетики (Сталь) χ>>1 100 − 150

Электростатическая сепарация

Метод основан на различии в электропроводности, электроёмкости и диэлектрических свойствах сырья.

При разработке схемы переработки сырья невозможно использовать электростатическую сепарацию т. к. в исходном сырье нет диэлектриков.

Гравитационное обогащение

Метод основан на различии в плотностях и скоростях падения частиц разделяемого сырья в воздухе (пневматический метод) или в жидких средах (гидродинамический метод).


Таблица 3.6.2. Плотность компонентов. [кг/м3]