Смекни!
smekni.com

Цветные металлы: классификация, области применения. Металлические проводниковые и полупроводниковые материалы, магнитные материалы (стр. 4 из 6)

Механизм протекания тока по металлам в твердом и жидком состояниях обусловлен движением свободных электронов, вследствие чего их называют проводниками с электронной проводимостью, или проводниками первого рода. Проводниками второго рода, или электролитами, являются растворы (в основном водные) кислот, щелочей и солей. Прохождение тока через эти проводники связано с переносом вместе с электрическими зарядами частей молекулы (ионов), вследствие чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза.

Ионные кристаллы в расплавленном состоянии также являются проводниками второго рода. Примером могут служить соляные закалочные ванны с электронагревом. Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля превзошла некоторое критическое значение, обеспечивающее начало ударной и фотоионизации, то газ может стать проводником с наличием электронной и ионной проводимостей. Сильно ионизированный газ при равенстве числа электронов и положительных ионов в единице объема представляет собой особую проводящую среду, носящую название плазмы.

Металлические проводники являются основным типом проводниковых материалов, применяемых в электротехнике.

Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных (свободных) электронов. В коллективизированное состояние от каждого атома металла отделяется от одного до двух электронов. При столкновениях электронов с узлами кристаллической решетки энергия, накопленная при ускорении электронов в электрическом поле, передается металлической основе проводника, вследствие чего он нагревается. В качестве опытного факта было установлено, что теплопроводность металлов пропорциональна их электропроводности.

При обмене электронами между нагретыми и холодными частями металла в отсутствие электрического поля имеет место переход кинетической энергии от нагретых частей проводника к более холодным, т. е. явление, называемое теплопроводностью. Так как механизмы электропроводности и теплопроводности обусловливаются плотностью и движением электронного газа, то материалы с высокой проводимостью будут также хорошими проводниками тепла.

Ряд опытов подтвердил гипотезу об электронном газе в металлах. К ним относятся следующие:

1. При длительном пропускании электрического тока через цепь, состоящую из одних металлических проводников, не наблюдается проникновения атомов одного металла в другой.

2. При нагреве металлов до высоких температур скорость теплового движения свободных электронов увеличивается, и наиболее быстрые из них могут вылетать из металла, преодолевая силы поверхностного потенциального барьера.

3. В момент неожиданной остановки быстро двигавшегося проводника происходит смещение электронного газа по закону инерции в направлении движения. Смещение электронов приводит к появлению разности потенциалов на концах заторможенного проводника, и подключенный к ним измерительный прибор дает отброс по шкале.

4. Исследуя поведение металлических проводников в магнитном поле, установили, что вследствие искривления траектории электронов в металлической пластинке, помещенной в поперечное магнитное поле, появляется поперечная э. д. с. и изменяется электрическое сопротивление проводника.

К основным характеристикам проводниковых материалов относятся:

1) удельная проводимость или обратная величина — удельное электрическое сопротивление;

2) температурный коэффициент удельного сопротивления;

3) удельная теплопроводность;

4) контактная разность потенциалов и термоэлектродвижущая сила (термо - э. д. с);

5) предел прочности при растяжении и относительное удлинение при разрыве.

К наиболее широко распространенным материалам высокой проводимости следует отнести медь и алюминий.

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

1) малое удельное сопротивление (из всех металлов только серебро имеет несколько меньшее удельное сопротивление, чем медь);

2) достаточно высокая механическая прочность;

3) удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии (медь окисляется на воздухе, даже в условиях высокой влажности, значительно медленнее, чем, например, железо); интенсивное окисление меди происходит только при повышенных температурах;

4) хорошая обрабатываемость — медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;

5) относительная легкость пайки и сварки.

Вторым по значению, после меди, проводниковым материалом является алюминий. Это металл серебристо-белого цвета, важнейший представитель так называемых легких металлов, алюминий приблизительно в 3,5 раза легче меди. Температурный коэффициент линейного расширения, удельная теплоемкость и теплота плавления алюминия больше, чем у меди.

Вследствие высоких значений удельной теплоемкости и теплоты плавления, для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает по сравнению с медью пониженными свойствами - как механическими, так и электрическими. При одинаковых сечении и длине электрическое сопротивление алюминиевого провода больше, чем медного, в 0,028 : 0,0172 = 1,63 раза. Следовательно, чтобы получить алюминиевый провод такого же электрического сопротивления, как и медный, нужно взять его сечение в 1,63 раза большего диаметра медного провода. Алюминиевый провод, хотя и толще медного, легче его приблизительно в два раза.

Отсюда вытекает простое экономическое правило: для изготовления проводов одной и той же проводимости при данной длине (т. е. при прочих равных условиях, при одних и тех же потерях передаваемой электрической энергии) алюминий выгоднее меди в том случае, если тонна алюминия дороже тонны меди не более, чем в два раза.

В настоящее время в нашей стране, исходя из экономических соображений, алюминий не только, как правило, заменил медь для воздушных линий передач, но начинает внедряться и в производство изолированных кабельных изделий.

2.3 Полупроводниковые материалы

К полупроводникам относится большое количество материалов, отличающихся друг от друга внутренней структурой, химическим составом и электрическими свойствами. Согласно химическому составу, кристаллические полупроводниковые материалы делят на 4 группы:

1. материалы, состоящие из атомов одного элемента: германий, кремний, селен, фосфор, бор, индий, галлий и др.;

2. материалы, состоящие из окислов металлов: закись меди, окись цинка, окись кадмия, двуокись титана и пр.;

3. материалы на основе соединений атомов третьей и пятой групп системы элементов Менделеева, обозначаемые общей формулой и называемые антимонидами. К этой группе относятся соединения сурьмы с индием, с галлием и др., соединения атомов второй и шестой групп, а также соединения атомов четвертой группы;

4. полупроводниковые материалы органического происхождения, например полициклические ароматические соединения: антрацен, нафталин и др.

Согласно кристаллической структуре, полупроводниковые материалы делят на 2 группы: монокристаллические и поликристаллические полупроводники. К первой группе относятся материалы, получаемые в виде больших одиночных кристаллов (монокристаллы). Среди них можно назвать германий, кремний, из которых вырезают пластинки для выпрямителей и других полупроводниковых приборов.

Вторая группа материалов - это полупроводники, состоящие из множества небольших кристаллов, спаянных друг с другом. Поликристаллическими полупроводниками являются: селен, карбид кремния и пр.

По величине удельного объемного сопротивления полупроводники занимают промежуточное положение между проводниками и диэлектриками. Некоторые из них резко уменьшают электрическое сопротивление при воздействии на них высокого напряжения. Это явление нашло применение в вентильных разрядниках для защиты линий электропередачи. Другие полупроводники резко уменьшают свое сопротивление под действием света. Это используется в фотоэлементах и фоторезисторах. Общим свойством для полупроводников является то, что они обладают электронной и дырочной проводимостью.

Большая группа веществ с электронной электропроводностью, удельное сопротивление которых при нормальной температуре лежит между удельными сопротивлениями проводников и диэлектриков может быть отнесена к полупроводникам.

Электропроводность полупроводников в сильной степени зависит от внешних энергетических воздействий, а также от различных примесей, иногда в ничтожных количествах присутствующих в теле собственного полупроводника. Управляемость электропроводностью полупроводников температурой, светом, электрическим полем, механическими усилиями положена соответственно в основу принципа действия терморезисторов (термисторов), фоторезисторов, нелинейных резисторов (варисторов), тензорезисторов и т.д.

Наличие у полупроводников двух типов электропроводности — «электронной» (n) * и «электронно-дырочной» (р) позволяет получить полупроводниковые изделия с р—n-переходом.

При существовании в полупроводнике р—n-перехода возникает запирающий слой, которым обусловливается выпрямительный эффект для переменного тока. Наличие двух и более взаимно связанных переходов позволяет получать управляемые системы — транзисторы.

На использовании возможностей р n-переходов основаны важнейшие применения полупроводников в электротехнике. Сюда относятся различные типы как мощных, так и маломощных выпрямителей, усилителей и генераторов. Полупроводниковые системы могут быть с успехом использованы для преобразования различных видов энергии в энергию электрического тока с такими значениями коэффициента преобразования, которые делают их сравнимыми с существующими преобразователями других типов, а иногда и превосходящими их. Примерами полупроводниковых преобразователей могут быть «солнечные батареи» с к. п. д. порядка 11% и термоэлектрические генераторы.