Смекни!
smekni.com

Конструкционные стали в машиностроении (стр. 3 из 4)

Хром и никель понижают критическую точку Ас,

700
С и уменьшают склонность зерна аустенита к росту, поэтому легированная сталь 20ХН3А является наследственно мелкозернистой.

5.2. Распад переохлажденного аустенита.

Распад аустенита происходит при температуре ниже 700

С (критическая точка Ас1), когда свободная энергия выше свободной энергии продуктов его превращения. От степени переохлаждения зависит скорость превращения и строения продуктов распада. На рис.6 приведены режимы термической обработки стали 20ХН3А.

Рис.6. Диаграмма изотермического распада стали 20ХН3А.

Режимы охлаждения

V1 -- изотермический отжиг;

V2—закалка непрерывная;

Перлитное превращение. Распад аустенита с образованием перлита является диффузионным процессом и развивается в результате флуктуации состава( неоднородности в распределении углерода).

Как любой диффузионный процесс распад аустенита происходит путём возникновения зародышей (ч. з.) и роста их с определённой скоростью (с. р.).

В аустените, оказавшемся в неравновесном состоянии при температуре ниже А1, углерод диффундирует к наиболее дефектным местам кристаллической решётки, к местам скопления вакансий вблизи границ зёрен. Поэтому зародыши цементита образуются по границам зёрен аустенита.

Рост зародышей цементита происходит вследствие диффузии углерода из прилегающего аустенита, что приводит к обеднению углеродом аустенита, окружающего образовавшиеся пластинки цементита, и способствует превращению его феррит за счёт полиморфного превращения решётки Г.Ц.К. в О.Ц.К. Таким образом происходит рост перлитных колоний.

Структура стали 20ХН3А приведённая на рисунке 7:

Рис.7. Микроструктура стали 20ХН3А после изотермического отжига.

5.3. Мартенситное превращение.

При большом переохлаждении (вектор V2 ) углерод не успевает выделиться из из твердого раствора (аустенита) в виде частиц цементита, как это происходит при образовании перлита. Решётка

-железа перестраивается в решётку
-железа. Углерод остаётся внутри
-железа, в результате чего получается пересыщенный твёрдый раствор углерода в
-железе.

Значительное пересыщение

-железа углеродом вызывает изменение объемно-центрированной кубической решётки в тетрагональную, Элементарной ячейкой которой является прямоугольный параллелепипед, рис.8:

Рис.8. Кристаллическая ячейка мартенсита.

Атомы углерода в такой ячейке располагаются в междоузлиях ( что характерно для твёрдого раствора внедрения) или в центре основания (сторона а), или в середине удлинённых рёбер (сторона с). Степень тетрагональности:

с/а=1.08

Мартенсит является перенасыщенным твёрдым раствором внедрения углерода в

-железе.

Мартенситное превращение протекает ниже температуры 400 араллельных пластинок феррита и цементита характеризуется для всей перлитной области. неоднор

С для стали 20ХН3А.

Для снятия внутренних напряжений в стали проводят отпуск при температуре 200-300

С.

При первом превращении из пересыщенного

-раствора (мартенсит) выделяется углерод, поэтому тетрагональность решётки уменьшается и соотношение осей с/а приближается к единице. Содержание углерода в мартенсите снижается, он выделяется в виде мельчайших пластинок карбида железа, называемого
(эпсилан) — карбидом (FeхC), имеющем гексагональную решетку формулу, близкую с Fe2C.

Образовавшийся в результате первого отпуска мартенсит называется мартенситом отпуска. Он представляет собой смесь пересыщенного твёрдого раствора углерода в

-железе неоднородной концентрации и карбида, ещё не полностью обособившегося от решётки мартенсита.

Рис.9. Микроструктура стали 20ХН3А после отпуска.


5.4. Механизм образования и строение цементованного слоя.

Диффузия углерод в стали возникает не только, если углерод находится в атомарном состоянии, получаемом при дислокации газов, содержащих углерод (СО, СН4 и др.)

СН4

-- аустенит;

Атомарно углерод адсорбируется поверхностью стали и диффундирует в глубь металла.

Скорость диффузии углерода возрастает с повышением температуры. Цементацию ниже Ас1 не выполняют, т. к.

-железо растворяет мало углерода и цементованный слой состоит, главным образом только из очень тонкой корочки цементита.

Цементацию проводят при температурах выше Ас3 (800-850

С). В этом случае сначала диффундирует в решётку
-железа. При достижении предела насыщения аустенита углеродом создаются условия для образования на поверхности зародышей новой фазы, устойчивой при данной температуре, а именно цементита. Постепенно на поверхности образуется сплошной слой цементита.

Цементованный слой имеет переменную концентрацию углерода по толщине, убывающую от поверхности к сердцевине детали. В связи с этим после медленного охлаждения в структуре цементованного слоя можно различать три зоны:

- заэвтектоидную, состоящую из перлита и вторичного цементита (1);

- эвтектоидную зону, состоящую из одного перлита (2);

- доэвтектоидную, состоящего из перлита и феррита (3). Количество феррита в этой зоне непрерывно возрастает по мере приближения к сердцевине, рис.10.

За толщину цементованного слоя принимается сумма заэвтектоидной, эвтектоидной и половины переходной зон. Концентрация углерода в поверхностном слое составляет примерно 1,1%. Хром несколько повышает толщину цементованного слоя. Никель увеличивает скорость диффузии углерода.

Рис.10. Микроструктура цементованного слоя стали 20ХН3А.

П – перлит

Ф – феррит

Ц – цементит.


6. Контроль качества.

6.1. Определение величины наследственного зерна.

Любое металлическое изделие имеет поликристаллическое строение, т. е. состоит из большого числа зёрен.

Величина зерна металла зависит от его состава, условий его выплавки, кристаллизации, обработки давлением и термической обработки. От величины зерна зависят многие свойства металла. Металлы, имеющие крупное зерно, обладают пониженной прочностью, пластичностью и вязкостью.

Зерно которое образуется в стали после термической обработки по особому режиму, характеризует склонность стали к росту зерна при нагреве в процессе термической обработки, называется наследственным.

Методы выявления и определения величины зерна регламентированы ГОСТ 5639-65.

Для определения величины зерна при контрольных испытаниях применяют три метода.

1) визуальное сравнение видимых под микроскопом зёрен с эталонными изображениями шкал;

2) подсчёт количества зёрен, приходящихся на единицу поверхности шлифа;

3) Измерение среднего условного диаметра зерна или количества зерна в 1 мм

.

Проводим определение размера зерна в « »повторно подвергается термической обработке вместе с деталью. Для определения размера зерна используем метод сравнения.

Метод сравнения: Шлифер получают под микроскопом при увеличении 100

(допускается увеличение в пределах 90-105
) и проводят сравнение величины зерна с эталонными изображениями на шкале. На эталонных шкалах приведены микроструктуры с различной величиной зерна, оцениваемой номером. Всего имеется 18 номеров зерна: от -3 до +14. Основная шкала содержит эталон микроструктур с номером зерна от 1 до 10 при увеличении 100
.