Смекни!
smekni.com

Автоматизация методической печи (стр. 8 из 10)

Функциональная схема состоит из ряда отдельных контуров автоматического регулирования.

Первый контур регулирования температуры по зонам печи. Сигнал от датчика (поз. 1-1), как правило, это термопара ПП, поступает на преобразователь Ш-72 (поз. 1-2) с выходом 4-20мА, и далее на вход микроконтроллера (S7-200) также на вход МК подается значение с задатчика РЗД-22 (поз. 1-3). Контроллер формирует регулирующее воздействие (4-20мА), которое подается с выхода ВО1 МК на вход БРУ-32 (поз. 1-4). С БРУ сигнал подается на пускатель ПБР-2М, формирующий сигнал 0-220В (поз. 1-5), который воздействует на регулирующий орган типа МЭО (поз. 1-6), который, изменяя положение шибера, изменяет подачу топлива по зонам печи. Аналогично производится регулирование температуры по остальным отапливаемым зонам печи. Второй контур регулирует соотношение газ-воздух, подаваемых к горелкам печи. Для измерения расхода топлива и воздуха используется диафрагма типа БКС. С диафрагмы (поз. 2-1) снятые давления поступают на расходомер типа Метран-100 ДД (поз. 2-2), на выходе он формирует сигнал 4-20 мА, который подается на вход В3 МК. Также на входы В4, В5 подаются с задатчиков (поз. 2-3, 2-4) коэффициенты для расчета необходимого количества воздуха. Параллельно измеряется расход воздуха (диафрагма БКС поз. 3-1, расходомер Метран-100 ДД, поз. 3-2) и подается на вход В6 МК. Контроллер производит необходимые вычисления и на выход ВО2 выдает регулирующее воздействие. РВ с выхода ВО2 попадает на вход БРУ-32 (поз. 2-5) и далее аналогично контуру 1, сигнал подается на пускатель типа ПБР-2М (поз. 2-6), формирующий сигнал 0-220В который воздействует на регулирующий орган МЭО (поз. 2-7), изменяя расход воздуха по горелкам. Следующий контур регулирует давление в рабочем пространстве печи. В качестве датчика используется Сапфир-22 ДИ (поз. 10-1) с унифицированным выходным сигналом. Сигнал от датчика поступает на вход В14 МК. На вход В15 МК поступает сигнал от задатчика РЗД-22 (поз. 10-3, вых. 4-20мА). Контроллер производит необходимые вычисления и на выход ВО5 выдает регулирующее воздействие. РВ с выхода ВО5 попадает на вход БРУ-32 (поз. 10-4) и далее аналогично контуру 1, сигнал подается на пускатель типа ПБР-2М (поз. 10-5), формирующий сигнал 0-220В который воздействует на регулирующий орган МЭО (поз. 10-6). Также на схеме показаны средства контроля и сигнализации следующих параметров: Контроль температуры воздуха в основном воздухопроводе. Сигнал с термопары типа ХА (поз. 8-1) передается на преобразователь Ш-72 (поз. 8-2, вых. 4-20мА) и подается на вход В12 МК.

Контроль температуры отходящих дымовых газов. Сигнал с термопары типа ХА (поз. 9-1) передается на преобразователь Ш-72 (поз. 9-2, вых. 4-20мА) и подается на вход В13 МК. Контроль и сигнализация давления газа и воздуха в основных газопроводах. В качестве датчика используется Сапфир – 22 ДИ (поз. 6-1, 7-1), с унифицированным выходным сигналом. Сигнал с датчика подается на входы В10 и В11 МК соответственно через преобразователь типа Ш705 (поз. 6-3, 7-3) предназначенный для сигнализации достижения параметрами нижнего и верхнего уровня. Контур контроля состава продуктов сгорания, в качестве газоанализатора используется прибор Testo 350, сигнал о содержании H2, O2 и CO подается на входа В16, В17 и В18 соответственно для анализа и сигнализации. Также присутствуют контура контроля и регулирования расхода газа и воздуха на печь, предназначенные для контроля и ограничения расхода энергоносителей.

8. РАЗРАБОТКА И ОПИСАНИЕ ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ КОНТУРА КОНТРОЛЯ И РЕГУЛИРОВАНИЯ

В курсовом проекте мною была разработана принципиально-электрическая схема контура контроля и регулирования соотноотношения расхода топливо-воздух. В состав данного контура входят: датчик – Метран 100 -ДД, модуль ввода-вывода аналоговы S7-200, блок ручного управления БРУ-32, пускатель ПБР-2М и исполнительный механизм МЭО, задатчик РЗД-22. Приборы питаются от сети (~220В) или от собственных источников питания. Сигнал от датчика, через клеммы 3-4 выходит на модуль ввода-вывода (клеммы 2-3). Приборы соединены последовательно (в "токовую петлю") с использованием стабилитронов. Сигнал от модуля ввода-вывода (соответствующий управляющему воздействию, выработанному микроконтроллером) через клеммы 14-15 поступает на блок ручного управления (клеммы 12-15). Так же на модуль аналового входа (клеммы 6-7, 8-9) поступают сигналы от задатчика РЗД-22 (клеммы 5-7, 5-7). С блока ручного управления сигнал, соответствующий выбранному режиму управления (автомат-ручное), через конечные выключатели (клеммы МЭО 5-6 и 7-8), поступает на пускатель (клеммы 7-8). С пускателя через клеммы 3-4-5 сигнал в 220В поступает на исполнительный механизм (клеммы 1-2-3). Также в "токовую петлю", с использованием стабилитронов, соединена цепь индикации положения регулирующего органа, состоящая из МЭО (клеммы 9-10), блока ручного управления (клеммы 26-27) и модуля ввода-вывода (клеммы 4-5).

9. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ НАГРЕВА МЕТАЛЛА В МЕТОДИЧЕСКОЙ ПЕЧИ

Необходимо запрограммировать на языке C++ программу, которая должна представлять собой визуализацию нагрева заготовки в печи в каждой из ее зон. Для каждой зоны рассчитываются граничные условия. Уравнение нагрева имеет вид:

(1)

Задача сводится к определению зависимости от времени температуры Т в точках стержня, то есть функции двух переменных Т(z,x). Функция Т(z,х) должна удовлетворять уравнению теплопроводности(1) и начальному условию

Т(z,0)=f(x) (2)


и условиям на концах стержня

Е(0,х)=j1(z), u(z,t)=j2(z). (3)

Значения u(0,0) и u(L,0), полученные из (2) и (3), должны совпадать. Это будет если j1(0)=f(0), j2(0)=f(L).

Следует отметить, что путем замены переменных

z ў=

z

уравнение (1) можно преобразовать к виду

.

(4)

Это означает, что решение задачи (1)-(3) путем замены переменных сводится к решению задачи (4),(2),(3).

Построим на плоскости (z,x) сетку с шагом h по переменной z и с шагом m по переменной x (xj = (j-1)m). Обозначим Tij = T(zi,tj).

Производные в уравнении (1) аппроксимируем следующим образом:

,(5)

.(6)

Подставляя (5) и (6) в (1) при a=1, получим разностное уравнение:


(7)

В соответствии с (2) и (3) значения

Ti0 = f(zi), T0j = j1(zj), Tnj = j2(zj)(8)

являются известными. Тогда, подставляя в (7) j=0, получим систему n-1 линейных уравнений, решив которую можно определить ui1, i=1,..,n-1.

При этом, поскольку u01=j1(t1), un1=j2(t1), известными оказываются все значения временного слоя j=1, (t=t1). Затем, подставляя в (7) j=2, решаем систему уравнений относительно ui2 и т.д. для всех j=2,..,m.

Из (7) следует, что в каждое i-тое уравнение (i=1,..,n-1) с ненулевыми коэффициентами входят только три неизвестных Ti-1,j; Tij; Ti+1,j. Величина Ti,j-1 к этому моменту является известной и потому отнесена в правую часть уравнения.

Пусть на j-том шаге заданными являются параметры Ti,j-1 (i=1,..,n-1), T0j, Tnj, l. Все неизвестные значения Tij можно разместить в массиве xi (xi=Tij, i=0,..,n). Ищем связь xi-1 с xi в виде рекуррентного соотношения

xi-1=ci-1xi+ni-1, i=1,..,n.(10)

Подставляя (10) в (7), получаем

lci-1xi-(1+2l)xi+lxi+1 = -Тi,j-1-lni-1.

Отсюда


(11)

Сравнивая (11) с (10), находим рекуррентные соотношения

,

, (12)

c0= 0, n0 = T0j .

Таким образом, алгоритм определения значений Tij по известным Ti,j-1 состоит из двух этапов: прямого хода прогонки по формулам (12) при i=1,..,n-1 и обратного хода прогонки.

10. Инструкция по пользованию программой

Рисунок 10.1 – Рабочее окно программы.


На рисунке 10.1 показано рабочее окно программы. Программа выполнена на языке программирования Borland C++ Builder, содержит информацию о различных прокатываемых профилях и марках стали. Для изменения Всада заготовки необходимо выбрать требуемый из выпадающего списка меню "Всад заготовки". Аналогично выбирается и марка стали и требуемая заготовка (рисунок 10.2)

Рисунок 10.2 – Выбор требуемых параметров.

Информация о выбранных параметрах отображается на панелях слева, причем в нижней панели возможно изменять параметры, выбрав для этого "Ввод данных". По умолчанию на этой панели отображаются параметры текущей заготовки. По нажатии кнопки "Расчет" в окне появятся графики изменения температур по сечению заготовки (рисунок 10.3).


Рисунок 10-3 – Работа программы.


ВЫВОДЫ

На данный момент отделение методических печей занимает важное место в цикле производства проката различных сортов, видов и т. д. Для эффективной работы методической печи необходим серьезный контроль и автоматизация всех ее узлов.

Рост производства проката, повышение требований к его качеству, а также поточность технологических процессов создали условия для широкого внедрения эффективных средств автоматического контроля и управления и поставили задачу дальнейшего повышения уровня автоматизации. Автоматическое управление внедряют практически на всех участках отделения методических печей. Автоматизируются процессы нагрева, расходов топлива и воздуха, получают развитие новые, более совершенные способы контроля и управления процессами нагрева металла.