Смекни!
smekni.com

Автоматизация процесса селективной очистки масел (стр. 3 из 7)

Таким образом, после облагораживания масляная основа нефтяных масел представляет собой концентрат нафтено-парафиновых углеводородов, содержание которых в зависимости от происхождения нефти составляет 50-75%.

Целевые продукты селективной очистки масел – рафинаты по сравнению с сырьем имеют меньшие плотность, вязкость, кислотность коксуемость и более высокую температуру застывания. С целью улучшения низкотемпературных свойств масел рафинаты направляются на депарафинизацию и далее используются для приготовления масел.

Побочные продукты селективной очистки – экстракты, содержащие низкоиндексные полициклические ароматические углеводороды и смолистые соединения, используются в качестве сырья для производства битумов, технического углерода, нефтяных коксов, в качестве компонента мазута, газойлевой фракции, в качестве топлива печей на битумной установке и для приготовления пластификаторов каучуков в резиновой и шинной промышленности.

2.2 Теоретические основы

Процесс селективной очистки относится к физическим методам очистки масел, которые предусматривают разделение масляной фракции на две части без изменения химического строения углеводородов исходного сырья.

Селективная очистка – массообменный экстракционный процесс, основанный на избирательном растворении отдельных групп углеводородов, входящих в состав масел. [3-5].

Процесс экстракции заключается в последовательном перемешивании растворителя и исходного сырья и разделении полученных сосуществующих экстрактной и рафинатной фаз.

Разделение фаз происходит вследствие разности их плотностей, обусловленной различием плотностей растворителя и сырья [3, 7].

В верхней фазе – рафинатной – находится масло с небольшим количеством растворителя.

В нижней фазе – экстрактной – находится основная масса растворителя с небольшим количеством нежелательных компонентов масла с небольшим количеством нежелательных компонентов масла, которые в основном состоят из полициклических ароматических углеводородов с отрицательными значениями индекса вязкости и смолистых веществ.

Физико-химическую сущность, механизм и количественные закономерности экстракционных процессов в настоящее время трактуют с позиций молекулярной теории растворов (МТ). Согласно МТ растворов, состояние системы определяется двумя противоположно-действующими факторами: с одной стороны, межмолекулярным взаимодействием, обусловливающим потенциальную энергию молекул, и, с другой стороны, тепловым движением, которое определяет их кинетическую энергию. Притяжение между молекулами веществ, объясняющее их взаимную растворимость, создается за счет сил Ван-дер-Ваальса (трех типов) и водородных связей.

В случае растворения двух полярных веществ имеет место ориентационное взаимодействие постоянных диполей. В этом случае вокруг молекулы образуется электрическое поле и они стремятся друг относительно друга. Это приводит к их притяжению, в результате чего одно вещество растворяется в другом. Это взаимодействие короткое и выражается уравнением

, (1.1)

где m 1, m2 – дипольные моменты молекул соответственно растворителя и сырья;

k – константа Больцмана;

r – расстояние между взаимодействующими молекулами;

T – абсолютная температура.

В случае растворения двух веществ, одно из которых полярно, а другое неполярно, имеет место взаимодействие индуцированных диполей в неполярных молекулах и постоянных диполей молекул растворителя. Под действием электростатического поля полярных молекул происходит изменение электронной структуры молекул неполярного вещества. При этом центр тяжести отрицательно-заряженных частиц смещается по отношению к ядру на расстояние l, что приводит к возникновению индуцированного дипольного момента mи в молекулах неполярного вещества. Индуцированый дипольный момент пропорционален напряженности поля

, (1.2)

где a - показатель, определяющий природу вещества и называемый поляризуемостью; Е – напряженность поля.

Деформация электронных облаков неполярных молекул связана с их внутренним сопротивлением изменению структуры и поэтому практически не зависит от температуры.

Если оба вещества неполярны, то взаимодействие их молекул определяется дисперсионными силами, открытыми Е. Лондоном Дисперсионные силы притяжения вызываются взаимными короткими, периодически возникающими диполями. Молекулы неполярных веществ обладают флуктуирующими диполями (это такие колебания, которые вызывают мгновенные отклонения распределения электронной плотности от среднего распределения). Положение электрона относительно ядра можно рассматривать как кратковременный вращающийся диполь, заставляющий молекулу другого вещества в данное мгновение ориентироваться относительно этой молекулы.

При сближении молекул неполярных веществ движение флуктуирующих диполей становится согласованным, обусловливая их притяжение и согласованную ориентацию. Это приводит к появлению постоянно возобновляющихся сил притяжения, что обусловливает взаимную ориентацию неполярных молекул. Энергия Ед дисперсионного взаимодействия выражается уравнением Е. Лондона, выведенным методом квантовой механики:

, (1.3)

где h - постоянная Планка;

nо – частота колебаний электрического осциллятора.

На энергию дисперсионного взаимодействия температура влияние не оказывает.

К наиболее значимым параметрам, определяющим вид и интенсивность межмолекулярных взаимодействий, следует отнести расстояние между взаимодействующими молекулами. От этого расстояния зависят величины сил притяжения или отталкивания, числа соударений разноименных молекул, прочность образующихся связей.

Учет только ван-дер-ваальсовых взаимодействий приводит к весьма упрощенной модели расчета потенциальной энергии системы. В механизмах ориентационного, индукционного и дисперсионного эффектов заложены лишь парные взаимодействия без учета образования промежуточных соединений и ассоциации молекул. При взаимодействии высокомолекулярных соединений в растворах, как показал А.З. Биккулов, энергия связи заметно меняется в зависимости от расположения отдельных участков соседствующих молекул (связей радикал-радикал, радикал - функциональная группа, функциональная группа - функциональная группа).

При математическом описании дальнодействующего взаимодействия важно учитывать ассоциацию молекул посредством водородных связей, которые проявляются вследствие способности некоторых элементов (F, O, N, Cl, S) оттягивать электрон от соседнего атома водорода, который в свою очередь в некоторой степени приобретает свойства протона H+ и становится способным к взаимодействию с электронами электроотрицательных атомов указанных элементов. Образуется так называемая водородная связь: XH…X. Водородные связи образуются при пониженных температурах, так как повышение температуры приводит к их разрыву вследствие теплового движения молекул. Энергия водородной связи составляет 16,8 – 29,4 кДж/моль, а энергия всех типов ван-дер-ваальсовых взаимодействий » 41,9 кДж/моль, т.е. межмолекулярное взаимодействие обусловлено силами Ван-дер-Ваальса и водородной связью, причем в водородной связи существенную роль играет и донорно-акцепторное взаимодействие.

При растворении компонентов нефтяного сырья в растворителях могут в той или иной степени проявляться все составляющие сил межмолекулярного взаимодействия. Очевидно, с повышением температуры роль ориентационного взаимодействия и водородных связей уменьшается и роль дисперсионных сил возрастает.

Межмолекулярные силы взаимодействия при растворении компонентов масляных фракций в полярных и неполярных растворителях различны. Неполярные растворители, как например, низкомолекулярные жидкие или сжиженные углеводороды или соединения с небольшим дипольным моментом (хлороформ, этиловый спирт и др.) характеризуется тем, что притяжение между молекулами растворителя и углеводородов нефтяных фракций, обусловливающее образование растворов, происходит за счет дисперсионных сил. Неполярные растворители смешиваются с жидкими углеводородами нефти в любых соотношениях.

Твердые углеводороды масляных фракций ограниченно растворяются в неполярных растворителях. Растворимость их подчиняется общим законам теории растворимости твердых углеводородов в неполярных растворителях, в том числе в жидких компонентах масляных фракций, - уменьшается с увеличением их концентрации и молекулярной массы, а также температуры кипения фракций. Растворимость твердых углеводородов увеличивается при повышении температуры, при температуре плавления парафины и церезины, так же как и жидкие углеводороды, неограниченно растворяются в неполярных растворителях.

В производстве нефтяных масел наиболее широко используются полярные растворители. Под действием ориентационного взаимодействия в полярном растворителе будут в первую очередь растворяться смолистые соединения и гетеросоединения. При дальнейшем увеличении количества полярного растворителя под действием индукционных сил будут растворяться полициклические. При повышении температуры системы ее кинетическая энергия возрастает, что приводит к увеличению дисперсионной составляющей, так как в этом случае из-за возрастания теплового движения молекул ориентация их под действием электрического поля молекул растворителя затрудняется. Под влиянием дисперсионных сил преимущественно растворяются нафтеновые и парафиновые углеводороды.