Смекни!
smekni.com

Опис конструкції автоматизації випалювальної печі (стр. 4 из 8)

Алгоритм керування може бути побудований на принципі компенсації, або на принципі зворотного зв'язку, або з використанням обох принципів. У першому випадку керуючий пристрій, одержуючи результати виміру контрольованих впливів, що обурюють, розраховує й видає такі керуючі впливи які компенсують вплив збурювання й приводять вихідну величину в кращу відповідність із вимогами до неї. У другому випадку керуючий пристрій, аналізуючи розходження між вихідною величиною й завданням робить такий вплив на об'єкт, щоб наблизити до заданого значення.

Принцип зворотного зв'язку в багатьох відносинах простіше й ефективніше, ніж метод компенсації. Однак використання його при керуванні випалом вапна досить обмежено у зв'язку з неможливістю виміру багатьох вихідних параметрів процесу.

Всі керуючі впливи можна розділити на дві групи: статичні й динамічні. Відповідно до цього й керування можна розділити на статичне й динамічне. Статичне керування зводиться до знаходження оптимального об'єму природного газу, продувного повітря й фракційної сполуки вапняку, що забезпечують одержання кінцевих параметрів вапна якнайближче до заданого. Із цими цілями будуються статичні моделі випалу вапна, які реалізуються на ЕОМ і мікроконтролерах. Динамічне керування у відмінності від статичного передбачає визначення оптимальних значень керуючих впливів, що є функціями часу продувки. Воно реалізується на основі вимірів динамічних параметрів процесу. До динамічних керуючих впливів ставляться параметри;

1) витрата природного газу;

2) витрата продувного повітря.

Основним завданням для реалізації динамічного регулювання є безпосередній вимір параметрів процесу - температури й сполуки вапна. Однак неприступність печі для прямих вимірів практично виключає це. Що стосується визначення хімічного складу вапна, те тут найбільш перспічвне використання непрямих параметрів, доступних виміру й несучих у собі необхідну інформацію.

Також, у завдання керування входить контроль ряду параметрів:

Таблиця 1.

Контрольований параметр Спосіб вираження фізичної величини контрольованого параметра (А) в одиницях СИ
Задане значення Граничні значення Допуск заданий
Температура в сполучному каналі печі, З° 950-1200 750-1350 ±200
Тиск у сполучному каналі печі, кПа 10-30 8-38 ±3
Температура вапна із шахт № 1 ,№2, °З 100 120 ±10
Температура газів, що відходять, вапна із шахт №1,№2,З° 120 200 ±10
Тиск верхнього повітря (на горіння), кПа 25 8-38 ±5
Тиск нижнього повітря (на охолодження), кПа 24 8-30 ±5
Тиск повітря на продувку , кПа 50-70 30-90 ±5
Витрата верхнього повітря (на горіння), м /година 32000 20000 -40000 ±2000
Витрата нижнього повітря (на охолодження), м."7година 15000 10000-22000 ±2000
Температура природного газу на піч, °З 20 -10-40
Витрата природного газу на піч, Нм /година 2200 1600-2400 ±30

2. Вибір технічних засобів

­ Система керування випалом у печах ІОЦ являє собою комплекс технічних засобів, що забезпечують наступні функції;

­ забезпечення роботи печі і її механізмів у точній відповідності з вимогами технології в автоматичному режимі;

­ попередження й діагностування аварійних ситуацій, що забезпечує безпека праці й цілісність устаткування цеху;

­ візуальне відображення ходу технологічного процесу й роботи печі на екрані комп'ютера оператора;

­ запис і астросфера даних про основні параметри технологічного процесу в базі даних комп'ютера.

Автоматизована система керування технологією виробництва (надалі АСУТП) вапняно-випалювальній печі складається із трьох рівнів.

Перший рівень: комплекс засобів, для одержання даних про технологічний процес і його параметри.

Цей рівень містить у собі датчики, що здійснюють збір інформації про температуру, тиск, витрату, положення механізмів і інших параметрів процесу.

Другий рівень: програмувальний логічний контролер "SIМАТIС" 87-300 фірми SIЕМЕМ5.

Даний контролер, одержавши інформацію з першого й із третього рівнів, здійснює керування технологічним процесом по програмі, завантаженої в нього за допомогою програмуючого пристрою - програматору. Керування здійснюється шляхом подачі команд на виконавчі механізми.

Третій рівень: комплекс засобів, для відображення технологічного процесу, а також для передачі параметрів керування в контролер.

Цей рівень виконаний на базі сучасних персональних комп'ютерів промислового виконання фірми Advantech, оснащених спеціальними платами - комунікаційними процесорами для зв'язків з контролерами через шину PROFIBUS. По суті ці комп'ютери являють собою властиво робоче місце випалювача. Через ці комп'ютери здійснюється завдання параметрів і режимів роботи печі, а також здійснюється керування піччю в ручному режимі у випадку виникнення позаштатних ситуацій. Програмним забезпеченням на цьому рівні є система візуалізації In Touch7.1 американської фірми Wonder Ware.

Відповідно до поставлених завдань нам необхідно розробити контури контролю - основних технологічних параметрів (табл. 1) і керування подачею паливного газу в піч. Отже, можна синтезувати наступні контури контролю й керування (додаток Б):

1. Контур контролю й реєстрації температури в перехідному каналі. У ньому використовуються первинний датчик - пірометр радіаційного випромінювання Ardometr М250АЗ, у комплекті з перетворювачем сигналів - М5533, самописний прилад Zерагех 49 з уніфікованим вхідним сигналом 4-20 mа, сигнал з якого надходить у мікроконтролер.

2. Контур контролю тиску продувного повітря. У ньому використовується датчик тиску 62 з уніфікованим вхідним сигналом 4-20 mа, сигнал з якого надходить у мікроконтролер.

3. Контур контролю й реєстрації тиску в сполучному каналі. Складається з датчика тиску Impress 62 і самописного приладу Zераrех 49 з уніфікованим вхідним сигналом 4-20 mа, сигнал з якого надходить у мікроконтролер.

4. Контур контролю витрати повітря на горіння (верхнє повітря). Побудований на основі швидкісного витратоміра (група - гідродинамічних трубок) - вимірювальний зонд М 5-НР, у комплекті з перетворювачем перепаду тиску INDIF 51, вихідний сигнал 4-20 mа. Сигнал з INDIF 51 надходить у перетворювач INМАТ вихідний сигнал 0-20 mа, далі сигнали надходить у мікроконтролер.

5. Контур контролю тиску повітря на горіння (верхнє повітря). У ньому використовується первинний датчик тиску Impres 62 з уніфікованим вхідним сигналом 4-20 mA, сигнали з якого надходить у мікроконтролер.

6. Контур контролю витрати повітря на охолодження (нижнє повітря). Побудований на основі швидкісного витратоміра (група - гідродинамічних трубок) - вимірювальний зонд 622-5-НР у комплекті з перетворювачем перепаду тиску INDIF51 , вихідний сигнал 4-20 mа. Сигнал з INDIF51 надходить у перетворювач INМАТ , вихідний сигнал 0-20 mа, далі сигнали надходить у мікроконтролер.

7. Контур контролю тиску повітря на охолодження (нижнє повітря). У ньому використовується первинний датчик тиску Impress 62 з уніфікованим вхідним сигналом 4-20 mа, сигнали з якого надходить у мікроконтролер.

8. Контур контролю й реєстрації температури вапна із шахти. Використовується термометр опору Тсп-Рt100, вторинний що нормує преобразовательINPAL, з вихідними сигналами 4-20 mа, і прилад, що реєструє, Zераrех 49 з уніфікованим вхідним сигналом 4-20 mа, сигнал з якого надходить у мікроконтролер.

9. Контур контролю температури газів, що відходять, із шахти. Використовується термометр опору Тсп-Рt100 і вторинний перетворювач, що нормує, INPAL з уніфікованими вхідними сигналами 4-20 mа, сигнали з якого надходить у мікроконтролер.

10. Контур контролю температури природного газу. Використовується термометр опору ТСМ-50M, вторинний перетворювач, що нормує, INPAL, з вихідними сигналами 4-20 mа, і що показує (стрілочний) прилад Indicomp 2 з уніфікованим вхідним сигналом 4-20 mа, сигнал з якого надходить у мікроконтролер.

11. Контур контролю й регулювання витрати палива (природний газ). Складається з турбінного газового лічильника «Rombach» Т 150-ПРО1000, механічно пов'язаного з перетворювачем (частота/струм) WЕ-77/ ЕХ-UТ (поз. 11-2), з дискретним вихідним сигналом. Сигнал з перетворювача надходить у мікроконтролер, де поточна частота імпульсів перетвориться в поточну витрату газів, після чого дані передаються на пульт в ЕОМ, звідки вони надходять у наступний мікроконтролер, де витрата перетвориться у фотополяриметр сигнал і надходить на прилад, що реєструє, Zерагех 49 з уніфікованим вхідним сигналом 4-20 mа. У тім же мікроконтролері генерується сигнал на відкриття або закриття регулювального органа. Даний сигнал надходить на пускач АUМА 8А-07.1, що відкриває або закриває регулювальний орган.

3. Значення принципової схеми контуру контролю

Принципові електричні схеми в проектах автоматизації служать для зображення взаємного електричного зв'язку апаратів і пристроїв, дії яких забезпечують рішення завдань автоматичного контролю, регулювання, сигналізації й керування технологічним процесом. Ці схеми є важливими проектними матеріалами, які використовуються не тільки в процесі проектування, але й у процесі налагодження й експлуатації технологічної установки.

Як розгляд обраний контур контролю температури в сполучному каналі печі. Даний контур вирішує одну з основних завдань, що ставиться до теплового режиму роботи печі, а саме підтримка оптимальної температури в робочому просторі печі. На роботу даного контуру мають прямий вплив такі параметри, як:

- хімічний склад вапняку ;

- фракція вапняку;

- рівень вапняку в печі;