Смекни!
smekni.com

Смазка оборудования на металлургических предприятиях (стр. 5 из 7)

При выборе смазочного материала для подшипника (жидкого или пластичного) следует учитывать, что пластичная смазка сильно повышает момент трения, который существенно увеличивается при понижении температуры. В тех случаях, когда частота вращения подшипника не превышает нескольких сотен мин-1, подшипник необходимо смазывать жидким смазочным материалом (маслом). При скорости, превышающей эту величину, лучше использовать для смазывания высоковязкое масло или, как заменитель, пластичный смазочный материал.

Таблица 5. Одноразовое количество смазочного материала (Км), необходимое на заполнение корпуса подшипника и для периодического добавления.

d, мм

Км, г при использовании подшипников серии

Единовременный расход смазочного материала для периодического добавления

Для мелких прижимных фланцев

Для глубоких прижимных фланцев

Для крышек с уплотняющим войлоком

Для разъемных фланцев корпуса

200 300

400

200

300

400

200

300

400

200

300

400

200

300

400

500

600

90

175 280 425 263 420 637 315 503 765 685 1090 1660 2,4 4,1 6,1 3,2 6,0

85

199 310 486 299 465 730 358 557 875 775 1210 1895 2,7 4,5 6,1 3,9 6,7

100

224 362 525 336 543 788 403 650 945 875 1410 2050 3,1 5,1 7,3 4,1 7,8

110

279 455 663 418 683 1000 585 955 1395 1170 1910 2790 3,8 6,0 9,1 5,3 9,6

120

318 532 817 476 795 1225 667 1120 1720 1370 2230 3430 4,3 7,2 11,2 6,7 11,2

130

360 615 987 540 922 1480 755 1290 2070 1470 2580 4150 4,6 8,1 13,3 7,4 13,0

140

429 704 1100 645 1055 1650 900 1475 2350 1800 2960 4630 5,3 9,3 14,8 8,5 15,0

Примечание: d—внутренний диаметр.

Допускаемые скорости подшипников качения при использовании пластичной смазки определяют из соотношения внутреннего диаметра d, мм и частоты вращения ω, мин-1. Практически же окружная скорость вращения не должна превышать 4—5 м/с. Однако для этой цели существуют определенные формулы.

Подшипниковые узлы необходимо тщательно защищать от попадания пыли, грязи и воды. В противном случае долговечность подшипников резко снижается. Для защиты подшипников разработаны и успешно эксплуатируются специальные уплотнения. В связи с этим следует помнить некоторые рекомендации по ходовым зазорам в лабиринтных и других уплотнениях вала. Они изменяются в зависимости от конструкции и во многом зависят от механической точности, вибрационного перемещения вала в подшипнике и они необходимы во избежание фрикционного контакта на высокой скорости. Для неответственных конструкций подшипниковых опор размер этих зазоров колеблется в пределах от 0,076 до 0,127 мм на радиус и почти столько же в осевом направлении.

При назначении жидкого смазочного материала для узлов трения (подшипников качения) следует иметь в виду, что они весьма чувствительны к количеству подаваемого в них масла и периодичности его подачи в подшипники. Так, для очень низких скоростей при d*ω= 10000 и температуре не выше 50 °С достаточно одной-двух капель масла для нескольких тысяч часов работы подшипника.

Если же требуется достичь минимального значения момента трения (при том же произведении d*ω= 10000), следует использовать масло с меньшей вязкостью, чем это было до этого

Масла для подшипников качения (и скольжения тоже), заключенных в общий картер с зубчатыми передачами (редукторы), подбираются в первую очередь исходя из требований по смазыванию зубчатых передач, однако и с учетом эффективности смазывания подшипников.

Смазывание погружением можно успешно применять до значения d*ω = 100000 (при условии соблюдения необходимого низкого уровня масла в ванне с жидким смазочным материалом) При применении смазывания погружением важно поддерживать в процессе эксплуатации правильный уровень масла в ванне подшипника. Этот уровень должен находиться между 1 /3 и 1/2 высоты нижнего шарика или ролика подшипника, поскольку даже небольшое повышение уровня масла в ванне приводит к повышению коэффициента трения и температуры подшипника. Об этом свидетельствует следующее экспериментальное исследование. Повышение уровня масла в ванне подшипника от центра нижнего шарика до его верхней точки вызывает сильный нагрев подшипника (эквивалентный повышению частоты вращения подшипника в 2—2,5 раза или увеличению радиальной нагрузки от 2 до 6 раз, а иногда и более. При d*ω ≤ 200000 рекомендуется капельное смазывание, при котором к поверхностям трения жидкий смазочный материал подводится в виде капель.

При d*ω ≈ 600000 и когда температура может достигать 150 ˚С многие пластичные смазки оказываются недостаточно работоспособными, а иные могут оставаться годными к работе не более нескольких сотен часов. В связи с этим при высоких скоростях необходимо в зону трения подавать только чистое смазочное масло, питая подшипники методом капельного смазывания или смазывания под давлением, при котором смазочный материал подводится к поверхностям трения под давлением. При необходимости может быть использовано смазывание масляным туманом, при котором смазочный материал подводится к поверхностям трения в виде легкого или густого тумана, обычно образуемого путем введения смазочного материала в струю воздуха или газа. Кроме того, следует предупреждать возникновения разности воздушного давления (в корпусе подшипника и за его пределами), для чего могут потребоваться специальные уплотнения. Следует применять только определенные уплотнения, которые обеспечивают надежную работу подшипников, в частности лабиринтные уплотнения. Необходимо также использовать корпуса подшипников с минимальным воздушным пространством.

Капельное смазывание является наилучшим методом смазывания для подшипниковых опор металлургического оборудования. Оно обеспечивает довольно устойчивое охлаждение и исключает турбулентное сопротивление подшипника, как весьма ответственного узла оборудования отрасли. Однако если по каким-либо причинам (например, по условиям конструкции) нельзя применить капельное смазывание или смазывание под давлением или смазывание масляным туманом, используют фитильное смазывание, при котором жидкий смазочный материал подводится к поверхности прения с помощью фитиля. При этом масло всасывается через подшипник при помощи маслоотражателей и насосных устройств с целью преодоления сопротивления вращению подшипника.

Часто используют метод фитильного смазывания. При этом фитили должны иметь определенные размеры, особенно в поперечном сечении. Они всегда должны быть погруженными в масло. Их следует использовать парами и располагать как можно ближе к подшипнику. Если большая площадь фитилей хорошо окружает вал, то они способны вновь поглощать масло, которое при работе отбрасывается от вала. Вязкость смазочного масла должна быть такой, чтобы его можно было подавать к фитилям при низких температурах при давлении ниже атмосферного и пониженных скоростях. При этом маслоотражатели должны пропускать через подшипник масляный туман, а маслосборники должны тщательно охлаждаться.

При больших нагрузках и высоких скоростях (d*ω > 600000) рекомендуют осуществлять капельное смазывание подшипников. Если же имеется источник сухого и чистого воздуха, а некоторая потеря смазочного масла не имеет существенного значения, тогда нужно использовать смазывание подшипников масляным туманом. При этом в линии подачи воздуха в таких системах устанавливают воздухоотделитель и фильтр, для чего необходимо тщательно охлаждать маслосборник, чтобы маслоотражатели легко.

Смазка плоских направляющих скольжении и качения.

Направляющие прямолинейного движения являются разновидностью опор скольжения или качения. Они обеспечивают прямолинейность возвратно-поступательного движения деталей (типа столов, суппортов и ползунов) и их применяют главным образом в станках, а также поршневых и кузнечнопрессовых машинах. Основным критерием работоспособности направляющих скольжения (рис. 3) является износ и заедание. Для уменьшения износа применяют ёсмазочный материал, защиту от загрязнения, износостойкие материалы (сталь,чугун, антифрикционные материалы и пр.), а также используют малые давления на поверхностях трения. В качестве антифрикционных материалов используют бронзы и баббиты.

На рис. 3 показаны две плоские пластины А и Б, залитые маслом и нагруженные силой Р. Под действием силы О пластина А движется относительно пластины Б со скоростью υ. Если последняя мала (рис. 3, а), то пластина А соскабливает масло с пластины Б, в результате чего поверхности трения (А и Б) непосредственно соприкасаются друг с другом. При этом образуется полусухое (граничное) или полужидкостное трение При достаточно большой скорости v (рис. 3, б) пластина А поднимается в масляном слое и принимает наклонное положение, подобно тому как поднимается глиссер, скользящий по поверхности воды. В результате между пластинами образуется сужающийся зазор, в который непрерывно затягивается вязкое и липкое масло. Протекание масла через сужающийся зазор сопровождается образованием давления р (см. рис. 3, б), которое уравновешивает внешнюю нагрузку. В этом случае движение продолжается в условиях жидкостного трения. Переход к режиму гидродинамического трения происходит при некоторой скорости, называемой критической υкр.