Смекни!
smekni.com

Теоретичні основи теплотехніки (стр. 17 из 35)

(16.5)

З цього виразу можна зробити висновок, щотермічнийККД збільшіться іззбльшенням степені стискування ε і залежить від λ і ρ.

При ρ=1 цикл із змішаним підведенням теплоти перетворюється в цикл із ізохорним підведенням. Термічний коефіцієнт буде рівний

(16.6)

а при λ=1 в цикл з ізобарним підведенням теплоти. Дня цього циклу одержима

(16.7)

16.2 Порівняння циклів

Із порівняння (16.7) і (16.6) ввдно, що при однакових степенях стиску цикл з ізохорним підведенням теплоти має більший ККД чим цикл з ізобарннм підведенням. Але практично двигуни з ізобарннм підведенням теплоти мають більш високий ККД, чим цикл з ізохорним підведенням. Двигуни з ізобарним підведенням теплоти мають більш високу степінь стиснення, тому вони більш економічні, чим двигуниз ізохорним підведенням

Тому доцілшо порівнювати ці цикли при однакових кінцевих тисках і температурах, тобто, в умовах однакових допустимих термічних і механічних напруг (рис. 16.2.1).

На рисунку показані цикли з ізобарним і ізохорним підведенням теплоти в одному і тому ж інтервалі температури

Рис. 16.2.1 Порівнянняцнклівз підведенням теплоти по ізохоріі ізобарі в ТS -діаграмі: а- при однакові й степені стиснення; б -при однаковій максимальній температурі циклу.

Як видно з графіку середня температура підводу теплоти Т1ср в циклі з p=const більша, чим в циклі з v=const тому ККД циклу при p=const вищий, чим ККД циклу при v=const.

З цього порівняння виходить, що для кращого використання теплоти q1, доцільно частину її q1’ надати при v=const до моменту одержання в двигуні допустимих максимальних тисків, а другу частину q1’’ надати при p=const (. Тобто д.в.3. працює по щклу зі з мішаним підведенням теплоти.

17. ГАЗОТУРБІННІ УСТАНОВКИ (ГТУ)

Можливість отримання значної потужності в одному агрегаті (до 100 тис. кВт і вище) внаслідок відсутності інерційних зусиль від мас, що рухаються зворотньо-поступально, і більш повного розширення продуктів згорання (до тиску зовнішнього повітря), атакожмалі габарити і низький розхід мастила та охолоджуючої рідини зумовиш розвиток газотурбінних установок в різних галрях народного господарства і особливо в авіації в зв'язку з створенням реактивних двигунів. Останнє вдалося здійснити завдяки використанню сугасних досягнень аеродинаміки і металургії, бо практична реалізація цгкла газотурбінної установки стає економічно вигідною лише при високих температурах робочого тіла (700-900°С).

Газотурбінні установки можуть працювати по їдклам зі згоранням при постійному об'ємі і при по стінному тиску. Практикою газотурбобудування було доведено, що найкращі перспективи розвитку мають газотурбінні установки, що працюють по циклу зі згоранням при p=const.

Рис 17.1 .Принцистова схема найпростішої газотурбінної установки 1 - газова турбіна; 2 - повітряний компресор; 3 - регенератор; 4 -камери згорання; 5 -паливний нас ос; 6 - піковий двигун.

Принципова схема найпростішої газотурбінної установки зі згоранням при p=const показана на рис. 17.1. Робота установки протікає наступним чином: пусковий двигун (найчастіше поршневий д в.з. або електродвигун) через з'єднувальну муфту розкручує вал турбіни і барабан осьового компресора. Комстресор починає засмоктувати повітря з атмосфери, стискає його і направляє в регенератор (повітрепідігрвач). В регенераторі повітря нагрівається за рахунок тепла відпрацьованих газів, що виходять з турбіни. Підігріте повітря по трубопроводу поступає в камеру зговання. Сюди ж паливний насос через форсунки подає рідке паливо. Паливо згорає неперервно при p=const

Продукти згорання направляються по трубогроводу до сопел газової турбіни, звідки виходять звеликою швидкістю (до 1000м/сек) і попадають на лопатки робочого колеса, віддаючи їм більшу частину своєї кінетичної енергії, за рахунок якої і отримується механічна енергія обертання вала турбіни. Частина цієї енергії витрачається на гривід компресора і паливного насоса (пусковий двигун вимикається) а решта знімається з валу у вигляді ефективної потужності М9 що служить для приводу машини-зас обу.

Відпрасовані гази по виході з лопатевих каналів робочих коліс турбіни направляються в регенератор, де віддають частину свого тепла на підігрів повітря, що проходить з компресора в камери згорання. Камера згорання неперервно з'єднується з повітряним і гвливним трубопроводами і трубопроводом, що служить для відводу продуктів згорання. Цим самим забезпечується неперервний процес горіння палива припостійному тиску.

Відомо, що для термодинамічного дослідження циклу такого газотурбінного агрегата потрібно ідеалізувати процеси, що протікають в ньому, рахуючиїхзворотніми. Дляцього дійснийпроцесроботизаміняють замкнутим і припускають, що в ньому приймає участь незмінна кількість робочого тіла. Розглянемо спочатку такий ідеальний цикл без регенератора, зобразивши його в рv і ТS -діаграмах (рис 172). В цьому циклі робоче тіло піддається стиску по адіабаті 1-2, потімвід безкінечного ряду зовнішніх джерел проводиться тепло по ізобарі 2-3; в подальшому відбувається розширення по адіабаті 3-4 і,

нарешті охолодження робочого тіла q2 протікає поізобарі 4-1.

Термічний КК.Д цикпа газотурбінної установки з згоранням при p=const може бутивизначенийзвідношеннят

.

Графічно корисна робота А0 вимірюється площею 12341, рівною різниці між площами 45634 і 15621. Перша з них (площа 45634) вимірює роботу т^роши Ат, а друга (площа 15621) вимірює роботу Аок, затрачену на стиск 1кг повітря від р1 до р2, тобто корисна робота газотурбінної установка дорівнює різниці повної роботи газової турбіни і теоретичної роботи компресора:

А0= Ат - Аок

Звідси

Оскільки температура відпрацьованих газів Т4 вище, ніж температура повітря на виході з компресора Т2, то частина тепла, що віддається при охолодженні газів в процесі 1-4 може бути передана в регенератор дгтя нагрівання повітря, що поступає в камеру згорання В Тs -діаграмі (див. рис. 17.2) нарів повітря в регенераторі відображається гроцесом 2-2', і тоді кількість тепла, що отримує робоче тіло від гарячого джерела, буде вимірюватися площею 2'3572', котра менша від площі 62356, що визначає q1 без регенератора, а це, природно, буд є збільшувати ККД циклу, дійсно:

без регенератора

з регенератором

але так як площа 2'3572'<площі23562,то

,

Очевидно, що теоретично максимальна температура підігріву повідря в регенераторі Т2 = Т4 в цьому випадку степінь регенерації σ=1. Степенем регенерації називається відношення кількості тепла, отриманого повітрям при проходженні через регенератор до максимально можливої кількості тепла, яке могло би отримати повітря в регенераторі, жон воно нагрівалось до температури відпрацьованих газів Т4. В діючих установках степінь регенерації о складає зазвичайО.6-0,75.

Дійсний цикл газотурбінної установки відрізняється від теоретичного наявністю втрат на тертя і вихороутворення в турбіні і компресорі (цикл 12а34а1 в Тs - діаграмі на рис 17.2) ці втрати уточнюються відносним внутрішнім ККД турбіни ηОіТ адіабатнім ККД компресора – ηАД і тоді внутрішній ККД такого дійсного цикла складає

Найбільш ефективними методами підвищення економічності газотурбінних установок являється застосування регенерації таїла, ступінчатий процес згорання,перехід назамкнутийі напівзамкнутийциклроботиі інші.


18. Цикли паросилових установок (псу)

Теплові паросилові установки дають біля 80% енергії, яка виробляється в країні. Принципова схема паросилової установки показана на рисі 8.1.

В паросилових установках продукти згорання палива безпосередньо не приймають участь в робочому циклі, вони є тільки джерелом теплоти, а робочим тілом служить пара, найчастіше це водяна пара. Волога насичена пара із котла 1 поступає в пароперегрів ач 2. де за рахунок теплоти димових газів нагрівається до стану перегрітої пари. Далі пара поступає в парову турбіну З, де теплова енергія пари перетворюється в кінетичну енергію. В конденсаторі 5 проходить повна конденсація водяної пари і вода насосом 6 подається назад в котел.

Цикл Карно, який є найефективнішим для водяної пари можливий тоді, коли ізотерми співпадають з ізобарами, тобто повинен проходити в області вологої насиченої пари. Технічно здійснити такий цикл важко через громіздкість насосної установки для стиснення вологої насиченої пари (рис.18.1.1).

Робота, яку необхідно виконати відповідає площі аdпт. Тому в паросилових установках за циклом Карно зберігається лиш загальне термодинамічне значення як циклу, який має в заданому інтервалі температури найбільше значення термічного к.к.д.

18.1 Цикл Ренкіна паросилової установки

Основним циклом паросилової установки є цикл Ренкіна. Принципова схема циклу показана на рис.18.1.2. Графічне зображення циклу показано на проходить при постійному тиску. В турбіні (процес 1-2) проходить адіабатне розширення пари до станув ологої насиченої пари. Конденсація пари і відведення теплоти проходить при постійному тиску і об'ємі. Процес 2-3 є одночасно ізобарнимі ізотермічним.