Смекни!
smekni.com

Конструкционные материалы (стр. 3 из 3)

Наполнители вводят в смолы для повышения механической прочности, теплостойкости, уменьшения усадки и снижения стоимости пластмассы. Наполнители могут быть в газовой (пенопласты) и твердой фазе, иметь органическое (древесная мука, хлопковые очесы, целлюлоза, бумага, хлопчатобумажная ткань) и неорганическое (графитная, асбестовая и кварцевая мука; углеродное и стекловолокно; стеклоткань) происхождение. Механическая прочность пластмасс существенно зависит от наполнителя. Пластмассы с порошкообразными, коротковолокнистыми, длиной 2 … 4 мм, наполнителями по прочности приближаются к дуралюмину и некоторым сортам стали. Для деталей, работающих в узлах трения, широко применяют теплопроводящие наполнители, например графит.

Пластификаторы увеличивают текучесть, эластичность и уменьшают хрупкость пластмасс. Отвердители ускоряют процесс затвердевания пластмасс, красители придают пластмассам нужный цвет.

По поведению при нагреве полимеров пластмассы делят на термопластичные (термопласты) и термореактивные (реактопласты). Термопласты (полиэтилен, фторопласт, полистирол, полиамиды и др.) имеют свойства обратимости: при повторных нагреваниях они переходят в пластическое или вязкотекучее состояние и им можно придать необходимую форму, а затем они вновь затвердевают при охлаждении. Переход термопластов из одного физического состояния в другое может осуществляться неоднократно без изменения химического состава. Термопласты легко формуются и надежно свариваются в изделия сложных форм, устойчивы к ударным и вибрационным нагрузкам, обладают хорошими антифрикционными свойствами. Свойства термопластов сильно зависят от температуры.

Термореактивныепластмассы не переходят в пластическое состояние при повторном нагревании. Они имеют более высокие, чем термопласты, показатели по твердости, модулю упругости, теплостойкости, сопротивлению усталостной прочности. Их свойства не так резко зависят от температуры. В зависимости от наполнителя различают монолитные (карболит), слоистые (текстолит, гетинакс) и композиционные пластмассы, где наполнителем используются волокна. В термореактивных пластмассах связующими являются эпоксидные, кремнийорганические и другие смолы.

Пластмассы являются хорошими электроизоляционными материалами. Для них характерна высокая химическая и коррозионная стойкость, малая плотность и теплостойкость. Они отличаются достаточной прочностью и упругостью. Детали, изготовленные из пластмасс, имеют блестящую гладкую поверхность разных цветов. Пластмассы значительно хуже, чем металлы, сопротивляются переменным нагрузкам; они подвержены тепловому, световому и атмосферному старению – процессу самопроизвольного необратимого изменения свойств; многие из пластмасс гигроскопичны.

Большим достоинством пластмасс является их высокая технологичность, обеспечивающая значительное сокращение производственного цикла. Изготовление металлических деталей осуществляется за десятки операций механической обработки, а пластмассовых – часто за одну технологическую операцию по формообразованию (прессование, выдавливание, литье под давлением и др.). Поэтому трудоемкость изготовления пластмассовых деталей уменьшается в 5 … 6 раз и более, а себестоимость продукции снижается в 2 … 3 раза, при этом получают очень высокий коэффициент использования материала, равный 0,9 … 0,95. Это приводит к значительному снижению материалоемкости и из-за малой плотности пластмасс (1,2 … 1,9 Мг/м3), к уменьшению массы конструкции в 4 ... 5 раз.

Из пластмасс изготавливают зубчатые и червячные колеса, шкивы, подшипники, ролики, корпуса, зубчатые ремни, ручки управления и другие детали. Производство пластмасс развивается интенсивнее, чем таких традиционных материалов, как металлы. Это объясняется удешевлением изготовления, улучшением ряда основных параметров механизмов: уменьшением веса и инерционности звеньев, потерь на трение, повышением быстродействия.

Виды термической и химико-термической обработки стали

Термической обработкой называется процесс изменения в заданном направлении структуры и свойств деталей из металлов и сплавов путем теплового воздействия. Тепловое воздействие может сочетаться с деформационным и химическим.

При термической обработке (рис. 2) проводят нагрев детали до определенной температуры, выдержку при этой температуре и охлаждение с определенной скоростью. Наиболее широко применяются следующие виды термической и химико-термической обработки: отжиг, нормализация, закалка, отпуск, старение и насыщение поверхностного слоя детали различными элементами.

При изготовлении деталей с использованием литья, сварки и горячей обработки давлением из-за разной скорости охлаждения элементов детали возникают значительные остаточные напряжения. Они могут вызвать искажение формы и размеров детали при последующей механической обработке, эксплуатации или хранении на складе.

Рис. 2

Отжиг заключается в нагреве выше критических температур, выдержке при данной температуре и последующем медленном охлаждении, обычно вместе с печью. Цели отжига – снизить твердость материала для повышения обрабатываемости, измельчить зерно, снять внутренние напряжения. При нагреве детали предел текучести σ0,2 снижается и когда он становится меньше остаточных напряжений, происходит быстрая их разрядка путем пластического течения металла.

Нормализацию (упорядочение) применяют к металлам и сплавам для измельчения зерна, смягчения и улучшения обрабатываемости резанием, выравнивания механических свойств, снятия внутренних напряжений. Основные параметры: температуру нагрева, время выдержки и скорость охлаждения – выбирают так, чтобы обеспечить необходимое фазовое превращение в металле. Для сталей это нагрев до температуры фазовых превращений и охлаждение на воздухе. Твердость и прочность стали после нормализации будут выше, чем после отжига.

Закалку проводят с целью повышения прочности и твердости деталей, ее можно применять для сталей, содержащих не менее 0,3% углерода. Закалка состоит из нагрева до температур фазовых превращений, выдержки и быстрого охлаждения в воде или масле. В процессе нагрева и охлаждения внутренние напряжения изменяются. Так, при нагреве поверхностные слои детали испытывают напряжения сжатия, так как стремятся расшириться, а этому препятствуют более холодные слои сердцевины. При охлаждении поверхностные слои, имеющие более низкую температуру, чем сердцевина, испытывают напряжения растяжения, а сердцевина – напряжения сжатия. Закаленная сталь всегда находится в структурно-напряженном состоянии.

Для снятия остаточных внутренних напряжений после закалки, повышения пластичности при сохранении достаточно высоких прочностных характеристик проводят отпуск. В зависимости от температуры нагрева, определяемой требуемыми свойствами детали, различают высокий (500 … 650 °С), средний (350 … 450 °С) и низкий (150 … 200 °С) отпуск.

Старение проводят для стабилизации размеров и свойств деталей после сварки, литья или термообработки. Оно заключается в длительном выдерживании при комнатной или небольшой повышенной температуре. Старению подвергают детали типа корпусов, рам.

Для повышения поверхностной твердости (износостойкости) деталей из низкоуглеродистых сталей с содержанием углерода до 0,2%, при сохранении хорошей сопротивляемости ударам и вибрационным нагрузкам, проводят цементацию и последующую закалку с низким отпуском. Цементация заключается в насыщении поверхностного слоя детали углеродом в газовой, твердой или жидкой среде. Толщина цементированного слоя возможна до 1,5 миллиметров за счет диффузии при соответственном подборе режима обработки.

Чтобы увеличить износостойкость и коррозионную стойкость детали, проводят насыщение ее поверхности при повышенных температурах азотом (азотирование), бором (борирование), углеродом и азотом (цианирование), хромом (хромирование), цинком (цинкование), алюминием (алитирование), кремнием (силицирование) и другими элементами в твердых, жидких и газообразных средах.


ЛИТЕРАТУРА

1 Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем: Учебное пособие. М.: – Высш. шк., 2001. – 480 с. 2001

2 Сурин В.М. Техническая механика: Учебное пособие. – Мн.: БГУИР, 2004. – 292 с. 2004

3 Ванторин В.Д. Механизмы приборных и вычислительных систем: Учебное пособие. – М.: Высш. шк., 1999. – 415 с.

1999