регистрация /  вход

Методы кинематического исследования механизмов (стр. 1 из 6)

Задачи ТММ. Основные понятия и определение машин, механизмов, звеньев и кинематических пар

Машина – устройство, совершающее механическое движение для преобразования энергии с целью получения народно-хозяйственного эффекта. Система тел, предназначенная для преобразования движения одного или нескольких тел в требуемые движения других тел, называется механизмом. По функциональному назначению механизмы делятся на: 1) механизмы двигателей и преобразователей;

2) передаточные механизмы;

3) исполнительные механизмы;

4) механизмы управления, контроля и регулирования; 5) механизмы подачи, транспортировки, питания и сортировки обрабатываемых средств и объектов; 6) механизмы автоматического счета, взвешивания и упаковки готовой продукции. Теория механизмов есть наука, изучающая строение, кинематику и динамику механизмов в связи с их анализом и синтезом. Задачи ТММ делятся на две группы: 1) структурный и кинематический анализ; 2) динамический анализ механизмов; 3) синтез механизмов. Твердые тела, из которых образуется механизм, называют звеньями. Звено – это одна деталь, либо совокупность нескольких деталей. Кривошип – звено, вращающееся на полный оборот вокруг неподвижной оси, при неполном обороте – коромыслом. Звено, совершающее возвратно- поступательное движение по неподвижной оси – ползуном. Звено, связывающие два подвижных звена называется шатуном. Неподвижное звено называют стойкой. Кулисой называется звено, совершающее возвратно-поступательное или вращательное движение по подвижной оси. Кинематической парой называют подвижное соединение двух соприкасающихся звеньев. Совокупность поверхностей, линий и точек звена, входящих в соприкосновение с другим звеном пары, называют элементом пары. Систему звеньев, образующих между собой кинематические пары, называют кинематической цепью. Таким образом, механизм – кинематическая цепь, в состав которой входит неподвижное звено.

Классификация кинематических пар по характеру сопряжения звеньев и по числу относительных подвижностей звеньев

Кинематические пары делятся на низшие и высшие. Кинематическая пара называется высшей, если элементы звеньев соприкасаются по линиям или в точках, и низшей, если только по поверхности. Все кинематические пары делятся на классы в зависимости от числа условий связи, налагаемых ими на относительное движение их звеньев. Число условий связи, наложенных на относительное движение каждого звена кинематической пары, может располагаться в пределах от 1 до 5. Следовательно, число степеней свободы H звена кинематической пары в относительном движении может быть выражено зависимостью H = 6 – S.

пяти подвижная КП

четырех подвижная КП

трех подвижная КП


двух подвижная вращательная КП

одно подвижные КП

Все кинематические цепи в свою очередь делятся на замкнутые и незамкнутые. Замкнутой кинематической цепью называется кинематическая цепь, каждое звено которой входит по крайней мере в две кинематические пары. Незамкнутой кинематической цепью называется кинематическая цепь, в которой есть звенья, входящие только в одну кинематическую пару.

Группы Ассура. Определение числа степеней свободы плоских и пространственных механизмов и анализ структуры плоских рычажных механизмов

Группой Ассура набор звеньев механизма, которые не вносят подвижности в механизм (суммарная степень подвижности равно 0) и не распадаются на более простые цепи, обладающие также нулевой степенью подвижности. Образование любого плоского механизма может быть представлено как последовательное присоединение групп, удовлетворяющих условию 3n–2p1 –p2 = 0 (n – число подвижных звеньев цепи, p1,2 – число кинематических пар, соответственно одно или двух подвижных). Отсюда следует, что условие, которому должны удовлетворяться группы, в состав которых входят только одноподвижные пары, можно записать так: 3n–2p1 = 0, следовательно, p1 = 3n/2 – условие существования группы Ассура. Все входящие в состав плоского механизма высшие кинематические одноподвижные и двухподвижные пары могут быть заменены кинематическими цепями, образованными только одноподвижными парами.

Группой Ассура первого вида называется группа состоящая из 3-х кинематических пар, в которой элементы 2-х звеньев остаются свободными.

Вторым видом является тот, при котором поступательной парой заменена одна из крайних вращательных пар.

В третьем виде поступательной парой заменена средняя вращательная пара.

В четвертом виде две крайние вращательные пары заменены двумя поступательными парами.

В пятом виде поступательными парами заменены крайняя и средняя вращательные пары.


Под степенью подвижности кинематической цепи понимается ее наибольшее число степеней свободы относительно условно неподвижной стойки.

Для плоских механизмов, звенья которых движутся в плоскостях, параллельных между собой, число степеней свободы определяется по формуле Чебышева: W = 3n – 2p1 – p2 . Данная формула является структурной формулой плоских механизмов.

Пассивные связи и избыточные подвижности

MC –момент сопротивления движению. Переход механизма из одной сборки в другую (механизм неправильно спроектирован). Усовершенствованный механизм с дополнительными звеньями не меняет сборки при работе.

W = 3n–2p1 =3×4–2×6 = 0. Это говорит о том, что механизм не вращается. Но на самом деле он вращается, но есть пассивная связь EF, не добавляющая степеней свободы механизму.


Аналитический метод кинематического исследования механизмов. Аналоги скоростей и ускорений

Кинематическое исследование механизма, т.е. изучение движения звеньев механизма без учета сил, обусловливающих это движение, состоит в основном в решении трех следующих задач:

1) определение перемещений звеньев и траекторий, описываемых точками звеньев; 2) определение скоростей отдельных точек звеньев и угловых скоростей звеньев; 3) определение ускорений отдельных точек звеньев и угловых ускорений звеньев. В аналитической форме функция перемещений, скоростей или ускорений задаются в виде функции, связывающей перемещение или угол поворота ведущего звена со временем, в зависимости от того, какую пару образует ведущее звено. Рассмотрим Группу Ассура 3-го вида:

Используется метод замкнутых векторных контуров.

1)`A`B =`A`C + `C`B,

óСх +ℓ3 cosj3 = Bx

ôCy +ℓ3 sinj3 = By

3 =Ö[(Bx –Cx )2 +(By –Cy )2 ], j3 = arctg[By –Cy )/(Bx –Cx )],

откуда Bx =ℓAB cosj1 ,

By = ℓAB sinj1 .

2)Угловая скорость wk этого звена может быть представлена так: w3 = dj3 /dt – угловая скорость, j¢3 = dj3 /dj – безразмерная угловая скорость звена 3, называемая аналогом угловой скорости.

3)Угловое ускорение определяется формулой ek = dwk /dt, тогда d2 j3 /dj1 2 = j3 ¢¢ называется аналогом углового ускорения. Скорость поступательного движения какого-либо звена равна V = dS/dt , величина

dS/dt=dS/dj×dj/dt,

где dS/dt – аналог скорости, имеющий размерность длины. Т.е V = S¢×w (уравнение связи), где S¢–аналог скорости звена. Продифференцировав это выражение по времени, получаем

am = dV/dt = d(S¢w)/dt = w×dS¢/dt + S¢dw/dt = w2 S¢¢ + eS¢.

Величина a = S¢¢=d2 S/dj2 есть аналог ускорения, имеющий также размерность длины.

Графический метод кинематического анализа плоских рычажных механизмов. Два метода разложения движения. Построение планов скоростей и ускорений. Теорема о подобии

1-й способ разложения движения (применяется когда известно движение одной точки звена и требуется определить движение другой точки того же звена):

VB = VA +VBA ,

где VA –переносная скорость, VBA – относительная скорость (скорость точки В по отношению к точке А),

aB = aA + aBA n + aBA t ,

где aA – переносное ускорение, aBA n и aBA t – относительные ускорения. 2-й способ (применяется когда известно движение звена и надо определить движение второго звена и эти два звена образуют поступательную пару):

Точки B2 и B1 совпадают, VB 2 = VB 1 + VB 2 B 1 , где VB 1 – переносная (вращательная) скорость, VB 2 B 1 – относительная скорость (поступательная); aB 2 =aB 1 + aB 2 B 1 k + aB 2 B 1 r , aB 1 – переносное ускорение, aB 2 B 1 k (поворотное) и aB 2 B 1 r (реактивное)– относительные.